优先发表
优先发表栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。
显示方式:
, 最新更新时间 , doi: 10.12358/j.issn.1001-5620.2023.06.012
摘要:
针对超深井长封固固井中,顶部底部水泥浆温差大,顶部低温段水泥浆超缓凝、水泥石强度发展缓慢的问题,采用水溶液聚合法制备了一种MgAl-EDTA-LDH(EDTA插层型水滑石)大温差早强剂,并配套形成了一套大温差水泥浆体系。实验结果表明,该大温差早强剂具有一定的缓凝效果,当其加量为2.0%,复配4.0%缓凝剂时,在240 ℃下其稠化时间可达509 min。该水泥浆在60 ℃下养护1 d和30 ℃下养护6 d的抗压强度均大于7 MPa,最大温差为210 ℃。大温差早强剂在不影响水泥浆稠化可调性的前提下,有利于低温段水泥浆柱的强度发展,耐热温度达300 ℃以上,适用于大温差固井需求。
针对超深井长封固固井中,顶部底部水泥浆温差大,顶部低温段水泥浆超缓凝、水泥石强度发展缓慢的问题,采用水溶液聚合法制备了一种MgAl-EDTA-LDH(EDTA插层型水滑石)大温差早强剂,并配套形成了一套大温差水泥浆体系。实验结果表明,该大温差早强剂具有一定的缓凝效果,当其加量为2.0%,复配4.0%缓凝剂时,在240 ℃下其稠化时间可达509 min。该水泥浆在60 ℃下养护1 d和30 ℃下养护6 d的抗压强度均大于7 MPa,最大温差为210 ℃。大温差早强剂在不影响水泥浆稠化可调性的前提下,有利于低温段水泥浆柱的强度发展,耐热温度达300 ℃以上,适用于大温差固井需求。
, 最新更新时间 , doi: 10.12358/j.issn.1001-5620.2023.06.013
摘要:
在固井施工过程中,为确保水泥浆的安全泵入,需要确定合适的水泥浆稠化时间,水泥浆的循环温度是决定稠化时间的重要因素之一。现有API规范中关于循环温度的计算不能满足不同地区、不同井筒条件的需求。因此,建立了一种非稳态流动传热模型,通过热物性参数测试,确定了钻井液、套管、岩石和水泥浆的导热系数和比热容,实现了对固井注替过程中水泥浆温度场的模拟。模拟结果表明,提高水泥浆与隔离液等流体的导热系数会降低水泥浆的循环温度;降低套管与岩石的导热系数,水泥浆循环温变化范围在1 ℃以内。通过采集浙江油田与塔里木油田的固井温度数据发现,实测数据与模拟数据的差距在5 ℃以内,数据吻合度较高,模型较为准确。通过固井注替过程中水泥浆循环温度影响规律的研究可为固井水泥浆体系性能设计提供理论支撑,保障固井高效安全施工。
在固井施工过程中,为确保水泥浆的安全泵入,需要确定合适的水泥浆稠化时间,水泥浆的循环温度是决定稠化时间的重要因素之一。现有API规范中关于循环温度的计算不能满足不同地区、不同井筒条件的需求。因此,建立了一种非稳态流动传热模型,通过热物性参数测试,确定了钻井液、套管、岩石和水泥浆的导热系数和比热容,实现了对固井注替过程中水泥浆温度场的模拟。模拟结果表明,提高水泥浆与隔离液等流体的导热系数会降低水泥浆的循环温度;降低套管与岩石的导热系数,水泥浆循环温变化范围在1 ℃以内。通过采集浙江油田与塔里木油田的固井温度数据发现,实测数据与模拟数据的差距在5 ℃以内,数据吻合度较高,模型较为准确。通过固井注替过程中水泥浆循环温度影响规律的研究可为固井水泥浆体系性能设计提供理论支撑,保障固井高效安全施工。