Plugging Micro-fractures to Prevent Gas-cut in Fractured Gas Reservoir Drilling
-
摘要: 塔里木油田塔中地区碳酸盐岩奥陶系储层地质条件复杂,储层裂缝发育,裂缝开度为20~400 μm的小裂缝和微裂缝所占比例在50%左右,钻井过程中井漏溢流频发,气侵现象严重,增加了井控风险。由于地层微裂缝分布复杂,且温度高(180℃),导致架桥粒子、充填粒子级配难度大,钻井液封堵效果不理想,而采用常规钻井液封堵评价方法在模拟裂缝形态和效果评价方面与现场实际存在着较大的差距。为此,提出了有针对性地封缝堵气评价方法:利用天然/人造岩心制作出微裂缝岩心模型,微裂缝开度介于20~400 μm之间,缝面粗糙度与天然裂缝接近;自主设计了封缝堵气实验评价装置,建立了微米级裂缝的封缝堵气评价方法。室内初步优选出抗高温的颗粒、纤维、可变形材料等纳微米封堵材料,并形成封堵配方,封堵配方与聚磺钻井液体系、ENVIROTHERM NT体系配伍性好,且酸溶率高于70%,不易污染储层。Abstract: The Ordovician carbonate rock reservoirs drilled in Tazhong area (Tarim Basin) have complex geology and developed fractures, 50% of which with widths between 20 μm and 400 μm. These fractures have led to frequent lost circulation, well kick and severe gas cut, which in turn resulted in well control risks. Complex distribution of fractures and high formation temperatures (180℃) make bridging with sized particles less effective in controlling mud losses. In laboratory experiment, commonly used testing methods for evaluating the performance of plugging drilling fluids are unable to effectively simulate the real fractures, and hence there is a big discrepancy between the laboratory evaluation and practical performanceof the plugging agents. To solve this problem, a new method has been presented based on the idea of plugging micro-fractures to prevent gas-cut. In this method, natural/artificial cores are used to make test cores with fractures of 20 μm-400 μm in width and roughness that is closely simulating the fractures encountered in the reservoirs drilled. Included in the new method are a device used to evaluate the performance of a drilling fluid in plugging micron fractures, and an evaluation procedure. With this method, particle, fiber and deformable LCMs sized in microns and nanometers were selected and an LCM formulation compatible with polymer sulfonate drilling fluid and ENVIROTHERM NT drilling fluid developed. This plugging PCM formulation, having acid solubility of greater than 70%,does not render contamination to reservoir.
-
[1] 贾利春, 陈勉, 侯冰, 等.裂缝性地层钻井液漏失模型及漏失规律[J]. 石油勘探与开发,2014,41(1):95-101.JIA Lichun,CHEN Mian,HOU Bing,et al. Drilling fluid loss model and loss dynamic behavior in fractured formations[J].Petroleum Exploration and Development, 2014,41(1):95-101. [2] 闫丰明,康毅力,孙凯,等. 裂缝-孔洞型碳酸盐岩储层暂堵性堵漏机理研究[J]. 石油钻探技术,2011, 39(2):81-85.YAN Fengming,KANG Yili,SUN Kai,et al. Mechanism of temporary sealing for fractured-vuggy carbonate reservoir[J].Petroleum Drilling Techniques, 2011,39(2):81-85. [3] 李松,康毅力,李大奇,等. 裂缝性地层H-B流型钻井液漏失流动模型及实验模拟[J]. 石油钻采工艺, 2015,37(6):57-62.LI Song,KANG Yili,LI Daqi,et al.Flow model and experimental simulation for leak-off of H-B flow-pattern drilling fluid in fractured formation[J].Oil Drilling & Production Technology, 2015,37(6):57-62. [4] 贾利春,陈勉,谭清明,等.承压封堵裂缝止裂条件影响因素分析[J]. 石油钻探技术,2016,44(1):49-56.JIA Lichun,CHEN Mian,TAN Qingming,et al. Key factors for inhibiting fracture propagation during leakage control under pressure[J].Petroleum Drilling Techniques, 2016,44(1):49-56. [5] 李之军. 垂直裂缝地层气液置换及钻井液防气侵封堵技术研究[D]. 西南石油大学,2014. LI Zhijun. Research on gas-liquid displacement in vertical crack and drilling fluid plugging technology to prevent gas cut[D].Southwest Petroleum University,2014. [6] 李家学,黄进军,罗平亚,等. 裂缝地层随钻刚性颗粒封堵机理与估算模型[J]. 石油学报,2011,32(3):509-513.LI Jiaxue,HUANG Jinjun,LUO Pingya,et al. Plugging mechanism and estimation models of rigid particles while drilling in fracture formations[J]. ACTA Petroleum Sinica, 2011,32(3):509-513. [7] 李大奇,康毅力,张浩. 基于可视缝宽测量的储层应力敏感性评价新方法[J]. 天然气地球科学,2011,22(3):494-500.LI Daqi,KANG Yili,ZHANG Hao. New evaluation method of permeability stress sensitivity based on visual fracture aperture measurement[J]. Natural Gas Geoscience,2011,22(3):494-500. [8] 张兴全,周英操,刘伟,等. 碳酸盐岩地层重力置换气侵特征[J]. 石油学报,2014,35(5):958-962.ZHANG Xinquan,ZHOU Yincao,LIU Wei,et al. Characters of gravity replacement gas kick in carbonate formation[J]. ACTA Petroleum Sinica,2014,35(5):958-962. [9] HUITT J L.Fluid flow in simulated fracture[J].Aiche Journal,1956,2(2):259-264. [10] PARSONS R W. Permeability of idealized fractured rock[J]. Society of Petroleum Engineers Journal,1966, 6(2):126-136. [11] 邱正松,王伟吉,董兵强,等. 微纳米封堵技术研究及应用[J]. 钻井液与完井液,2015,32(2):6-10.QIU Zhengsong,WANG Weiji,DONG Bingqiang, et al. Study and application of micro-nano plugging technology[J]. Drilling Fluid & Completion Fluid,2015, 32(2):6-10. [12] 徐江,石秉忠,王海波,等. 桥塞封堵裂缝性漏失机理研究[J]. 钻井液与完井液,2014,31(1):44-46.XU Jiang,SHI Bingzhong,WANG Haibo,et al. Mechanism study on bridge plugging technology for fractured formation[J]. Drilling Fluid&Completion Fluid, 2014,31(1):44-46. [13] 张洪伟,左凤江,李洪俊,等. 微裂缝封堵剂评价新方法及强封堵钻井液配方优选[J]. 钻井液与完井液, 2015,32(6):43-45,49. ZHANG Hongwei,ZUO Fengjiang,LI Hongjun. Method for evaluation of plugging of nano-micron fractures[J]. Drilling Fluid & Completion Fluid,2015, 32(6):43-45,49. [14] 赵正国,蒲晓林,王贵,等. 裂缝性漏失的桥塞堵漏钻井液技术[J]. 钻井液与完井液,2012,29(3):44-46.ZHAO Zhengguo,PU Xiaolin,WANG Gui,et al. Study on drilling fluid bridge plugging technology for fractured formation[J]. Drilling Fluid & Completion Fluid,2012,29(3):44-46. [15] 崔贵涛,李宝军,王兆政. 微乳液强抑制强封堵钻井液在SACHA区块的应用[J]. 石油钻探技术,2015, 43(6):20-23.CUI Guitao,LI Baojun,WANG Zhaozheng. The application of strong-inhibition plugging microemulsion drilling fluid in SACHA Block[J]. Petroleum Drilling Techniques,2015,43(6):20-23. [16] 郭京华,夏柏如,王长生,等. 也门裂缝性基岩油气藏钻井液技术[J]. 石油钻采工艺,2012,34(1):46-49.GUO Jinghua, XIA Bairu, WANG Changsheng,et al. Drilling fluids for fractured basement reservoir in Yemen[J]. Oil Drilling & Production Technology, 2012, 34(1):46-49.
点击查看大图
计量
- 文章访问数: 1327
- HTML全文浏览量: 299
- PDF下载量: 617
- 被引次数: 0