Study and Performance Evaluation of Ultra-High Temperature High Density Oil Based Drilling Fluids
-
摘要: 深层超深层油气钻探中面临着超高温高压、高压盐水、巨厚盐膏层和泥页岩层等复杂地质条件,导致油基钻井液的乳化稳定性、流变、滤失损耗等性能极难调控。合成了不饱和酸酐接枝妥尔油脂肪烃基的咪唑啉酰胺类主乳化剂和辅乳化剂,选用抗高温增黏剂、流型调节剂、润湿剂和降滤失剂,采用API重晶石和超细硫酸钡复合加重,构建了超高温高密度油基钻井液配方。性能评价结果表明,该超高温高密度油基钻井液抗温达220 ℃,复合加重后流变性显著改善,密度最高可达2.8 g/cm3,可抗40%淡水、40%复合盐水、5%~10%泥页岩岩屑和5%~10%石膏污染;在65 ℃/常压~220 ℃/172.5 MPa下具有良好的流变稳定性和悬浮稳定性。该超高温高密度油基钻井液为深层超深层油气资源的安全高效钻探提供了技术支撑。Abstract: Difficulties in controlling the emulsion stability, rheology and filtration property of the oil based drilling fluids are often encountered in drilling deep and ultra-deep wells in which high temperatures, high pressure formations and salt-waters, thick salt and gypsum zones and shale formations are penetrated. To deal with these problems, an ultra-high temperature high density oil based drilling fluid was formulated with synthesized emulsifiers, high temperature viscosifier, flow pattern additive, wetting agent, filter loss reducer and ultra-fine barite. The emulsifiers are an imidazoline amide with tall oil aliphatic hydrocarbon group grafted with unsaturated anhydride. Laboratory evaluation of the drilling fluid demonstrated that this drilling fluid can work normally at temperatures up to 220 ℃. The density of the drilling fluid can be weighted to 2.8 g/cm3. Using compounded weighting agents significantly improved the rheology of the drilling fluid. This drilling fluid is able to resist to contamination from 40% fresh water, or 40% compound salt water, or 5% – 10% shale cuttings, or 5% – 10% gypsum. The drilling fluid had good rheological stability and suspending stability at 65 ℃/atmospheric pressure to 220 ℃/172.5 MPa. This ultra-high temperature high density oil based drilling fluid has provided a technical support to the safe and efficient development of deep and ultra-deep buried oil and gas resources.
-
表 1 含乳化剂油包水钻井液的抗温能力评价
热滚
条件PV/
mPa·sYP/
PaFLHTHP/
mLES/
V热滚前 36.0 5.76 1328 150 ℃、16 h 36.0 7.20 2.8 1242 180 ℃、16 h 35.0 4.80 3.6 1049 200 ℃、16 h 34.5 4.80 4.2 917 220 ℃、16 h 30.0 4.32 4.8 709 表 2 密度为2.5 g/cm3油基钻井液高温热滚前后性能评价
热滚
条件PV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mLES/
V热滚前 69 18.0 12.5/14.5 1893 200 ℃、16 h 67 8.0 4.0/5.0 5.2 1242 220 ℃、16 h 61 6.5 3.5/5.0 7.6 1034 表 3 抗温200~220 ℃密度2.5 g/cm3油基钻井液配方优化及性能评价
钻井液 热滚
条件PV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mLES/
V3# 热滚前 68 20 16.0/18.5 2070 220 ℃、16 h 66 11.5 8.5/14.0 4.8 2055 200 ℃、72 h 68 12 7.0/12.5 5.2 1716 220 ℃、72 h 61 12.5 7.5/15.0 6.0 1882 4# 热滚前 94 20 10.0/17.5 2063 220 ℃、16 h 55 2.5 2.5/11.5 2.4 2070 200 ℃、72 h 60 3.5 4.0/7.5 5.6 2055 220 ℃、72 h 52 6.5 3.5/6.5 5.6 2062 表 4 超细硫酸钡对超高温高密度油基 钻井液性能影响的对比评价
ρ/
g·cm−3热滚
条件PV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mLES/
VSR 2.70
(4#)热滚前 135 20.0 12.5/15.0 2048 200 ℃、16 h 93 8.0 4.0/8.5 5.0 2050 0.998 2.70
(4#*)热滚前 88 11.5 7.5/10.5 2048 200 ℃、16 h 68 7.0 5.0/7.5 4.2 2050 1.000 2.70
(4#)热滚前 112 16.5 10.0/15.0 2048 220 ℃、16 h 90 5.0 2.0/7.5 4.8 2050 0.993 2.70
(4#*)热滚前 115 22.5 16.0/20.0 2048 220 ℃、16 h 79 4.0 3.0/7.5 4.0 2050 1.000 2.60
(4#*)热滚前 77 18.0 12.0/21.0 2048 200 ℃、16 h 71 5.0 3.0/5.0 4.8 2050 1.000 220 ℃、16 h 80 6.0 5.0/7.0 5.2 1950 1.000 2.80
(5#)热滚前 92 15.0 6.0/10.0 2050 220 ℃、16 h 93 7.0 5.0/6.5 3.2 2050 1.000 220 ℃、72 h 92 11.0 7.0/14.0 2.8 2050 1.000 2.80
(6#)热滚前 68 8.5 4.5/8.0 2050 220 ℃、16 h 68 8.5 5.5/7.0 5.0 1736 1.000 220 ℃、72 h 87 11.0 8.0/10.5 6.0 1091 1.000 注:4#*配方为4#+90%高密度重晶石+10%超细硫酸钡 表 5 超高温高密度油基钻井液(7#配方)抗污染实验(150 ℃、16 h)
污染
因素PV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mLES/
V污染前 56.0 9.0 4.0/4.5 3.2 2048 200 mL淡水 55.0 11.0 4.5/6.5 3.4 1267 400 mL淡水 67.0 13.5 5.5/8.5 3.6 703 200 mL复合盐水 67.0 15.5 3.5/4.5 4.4 765 400 mL复合盐水 84.0 21.5 4.5/5.0 1.0 401 100 g岩屑 68.0 14.5 6.0/8.5 2.0 2045 100 g硫酸钙 75.0 12.5 5.0/6.5 3.9 1872 注:污染因素为每升钻井液的加入量 表 6 超高温高密度油基钻井液(8#配方)抗污染实验(180 ℃、16 h)
污染
因素PV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mLES/
V污染前 66 9.0 5.0/6.5 5.4 2048 400 mL清水 61 12.0 5.0/7.0 4.0 384 400 mL复合盐水 74 15.5 7.0/8.0 5.0 388 50 g岩屑 87 6.5 5.2/7.0 4.2 1243 50 g硫酸钙 83 5.5 5.6/8.0 4.2 1509 注:污染因素为每升钻井液的加入量 表 7 超高温高密度油基钻井液的高温高压流变性测试
T/
℃P/
MPaφ600 φ300 PV/
mPa·sYP/
Paφ6 φ3 LSYP/
Pa65 107.5 64.9 42.6 11.15 15.9 14.7 6.48 65 34.5 180.7 104.8 75.9 14.45 19.7 18.5 8.30 150 69.0 87.0 56.2 30.8 12.70 17.2 16.3 7.39 150 138.0 114.9 64.9 50.0 7.45 15.4 14.3 6.34 180 138.0 92.9 52.6 40.3 6.15 13.9 12.8 5.62 180 172.5 119.9 69.7 50.2 9.75 15.5 14.6 6.58 200 172.5 110.8 62.4 48.2 7.20 14.2 13.4 6.05 220 172.5 105.4 59.2 46.2 6.50 12.9 11.9 5.32 表 8 环境温度对油基钻井液流变性的影响
T/℃ φ100 φ6 T/℃ φ100 φ6 10 186 19 40 61 8 20 153 16 50 47 7 30 65 10 65 32 6 -
[1] 周健,贾红军,刘永旺,等. 库车山前超深超高压盐水层安全钻井技术探索[J]. 钻井液与完井液,2017,34(1):54-59. doi: 10.3969/j.issn.1001-5620.2017.01.010ZHOU Jian, JIA Hongjun, LIU Yongwang, et al. Research on safe drilling technology for ultra deep ultrahigh pressure saltwater zones in Piedmont area, Kuche[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):54-59. doi: 10.3969/j.issn.1001-5620.2017.01.010 [2] 卓鲁斌,石建刚,吴继伟,等. 准噶尔盆地南缘钻井技术进展、难点及对策[J]. 西部探矿工程,2020,32(2):75-77. doi: 10.3969/j.issn.1004-5716.2020.02.025ZHUO Lubin, SHI Jiangang, WU Jiwei, et al. Progress, difficulties and countermeasures of drilling technology in the southern margin of Junggar Basin[J]. West-China Exploration Engineering, 2020, 32(2):75-77. doi: 10.3969/j.issn.1004-5716.2020.02.025 [3] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527-542.SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5):527-542. [4] 韩烈祥. 川渝地区超深井钻完井技术新进展[J]. 石油钻采工艺,2019,41(5):555-561.HAN Liexiang. New progress of drilling and completion technologies for ultra-deep wells in the Sichuan-Chongqing area[J]. Oil Drilling & Production Technology, 2019, 41(5):555-561. [5] 罗鸣,冯永存,桂云,等. 高温高压钻井关键技术发展现状及展望[J]. 石油科学通报,2021(2):228-244. doi: 10.3969/j.issn.2096-1693.2021.02.018LUO Ming, FENG Yongcun, GUI Yun, et al. Development status and prospect of key technologies for high temperature and high pressure drilling[J]. Petroleum Science Bulletin, 2021(2):228-244. doi: 10.3969/j.issn.2096-1693.2021.02.018 [6] 王星媛,陆灯云,吴正良. 抗220 ℃高密度油基钻井液的研究与应用[J]. 钻井液与完井液,2020,37(5):550-554,560.WANG Xingyuan, LU Dengyun, WU Zhengliang. Study and application of a high density oil base drilling fluid with high temperature resistance of 220 ℃[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):550-554,560. [7] 尹达, 胥志雄, 徐同台, 等. 库车山前深井钻完井液技术[M]. 北京: 石油工业出版社, 2020: 289-291.YIN Da, XU Zhixiong, XU Tongtai, et al. Drilling and completion fluid technology for deep wells in Piedmont of Kuche [M]. Beijing: Petroleum Industry Press, 2020: 289-291. [8] 张现斌, 黄达全, 王伟忠, 等. 矿物油基钻井液用聚酰胺基胺流型调节剂及其制备方法: CN103666414A [P]. 2014-03-26.ZHANG Xianbin, HUANG Daquan, WANG Weizhong, et al. Polyamide rheological modifier and its preparation method for mineral oil-based drilling fluids: CN103666414A [P]. 2014-03-26. [9] 叶艳,尹达,张謦文,等. 超微粉体加重高密度油基钻井液的性能[J]. 油田化学,2016,33(1):9-13.YE Yan, YIN Da, ZHANG Qingwen, et al. Performance of high-density oil-based drilling fluids improved by ultrafine powders[J]. Oilfield Chemistry, 2016, 33(1):9-13. [10] 王健, 彭芳芳, 徐同台, 等 钻井液沉降稳定性测试与预测方法研究进展[J]. 钻井液与完井液, 2012, 29(5): 79-83.WANG Jian, PENG Fangfang, XU Tongtai, et al. Research progress on testing and predicting methods for settling stability of drilling fluid [J]. Drilling Fluid & Completion Fluid , 2012, 29(5): 79-83. [11] STEVE YOUNG, GUIDO DE STEFANO, JOHN LEE. Advances in invert emulsion performance through novel emulsifier chemistry[C]//SPE-153770-MS, the SPE Oil and Gas India Conference and Exhibition, Mumbai, India, March 2012. [12] SCHILLING, PETER. Invert emulsifiers for oil-base drilling muds: US, US 4658036 [P]. 1987. [13] 邢文国, 孟宪兴, 冯维春, 等. 一种马来酸酐接枝植物油酸的制备方法: 中国, CN103664841A [P]. 2014-03-26.XING Wenguo, MENG Xianxing, FENG Weichun, et al. Preparation method of maleic anhydride grafted vegetable oil acid: CN103664841A[P]. 2014-03-26. [14] 邱心明. 具有多个亲水基团的油基钻井液用乳化剂的研制与性能评价[D]. 北京: 中国石油大学(北京), 2018.QIU Xinming. The development and performance evaluation of Emulsifier for oil-based drilling fluid with multiple hydrophilic groups [D]. Beijing: China University Petroleum, 2018. [15] 覃勇,蒋官澄,邓正强,等. 抗高温油基钻井液主乳化剂的合成与评价[J]. 钻井液与完井液,2016,33(1):6-10.QIN Yong, JIANG Guancheng, DENG Zhengqiang, et al. Synthesis and evalution of a primary emulsifier for high temperature oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):6-10. [16] FOUDAZI REZA, QAVI SAHAR, MASALOVA IRINA, et al. Physical chemistry of highly concentrated emulsions[J]. Advances in Colloid and Interface Science, 2015, 220:78-91. doi: 10.1016/j.cis.2015.03.002 [17] EMANUEL STAMATAKIS, STEVE YOUNG, GUIDO DE STEFANO. Meeting the ultrahigh-temperature/ultrahigh-pressure fluid challenge[J]. SPE Drilling & Completion, 2013, 28(1):86-92. [18] 邱正松, 韩成, 黄维安, 等 微粉重晶石高密度钻井液性能研究[J]. 钻井液与完井液, 2014, 31(1): 12-15.QIU Zhengsong, HAN Cheng, HUANG Weian, et al. . Research and evaluation of high-density drilling fluid weighted by micronized barite[J]. Drilling Fluid & Completion Fluid, 2014, 31(1): 12-15. [19] 高尊升,朱良根,周梦秋,等. 高密度超微重晶石完井液在塔里木油田超深井的应用[J]. 钻井液与完井液,2013,30(5):50-52. doi: 10.3969/j.issn.1001-5620.2013.05.014GAO Zunsheng, ZHU Lianggen, ZHOU Mengqiu, et al. Application of high density ultra-fine barite completion fluid in ultra-deep wells of Tarim oilfield[J]. Drilling Fluid & Completion Fluid, 2013, 30(5):50-52. doi: 10.3969/j.issn.1001-5620.2013.05.014 [20] 尹达,吴晓花,刘锋报,等. 抗160℃超高密度柴油基钻井液体系[J]. 钻井液与完井液,2019,36(3):280-286. doi: 10.3969/j.issn.1001-5620.2019.03.003YIN Da, WU Xiaohua, LIU Fengbao, et al. An ultra-high density diesel oil base drilling fluid for use at 160℃[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):280-286. doi: 10.3969/j.issn.1001-5620.2019.03.003 [21] LEE JOHN, SHADRAVAN ARASH, STEVE YOUNG. Rheological properties of invert emulsion drilling fluid under extreme HPHT conditions[R]. SPE-151413-MS, IADC/SPE Drilling Conference and Exhibition, San Diego, California, USA, March 2012. [22] 赵建刚,赵锴,韩天夫,等. 超高温高压流变仪的研制与应用[J]. 钻井液与完井液,2019,36(3):333-337. doi: 10.3969/j.issn.1001-5620.2019.03.012ZHAO Jiangang, ZHAO Kai, HAN Tianfu, et al. Development and application of an ultra-high temperature ultra-high pressure rheometer[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):333-337. doi: 10.3969/j.issn.1001-5620.2019.03.012 [23] 赵文, 孙强, 张恒. 抗高温高密度油基钻井液在塔里木油田大北12X井的应用[J]. 钻井液与完井液, 2020, 37(6): 709-714,720.ZHAO Wen, SUN Qiang, ZHANG Heng. Application of a high temperature high density oil base drilling fluid in well Dabei-12X in Tarim oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 709-714,720. [24] 王建华, 闫丽丽, 谢盛, 等. 塔里木油田库车山前高压盐水层油基钻井液技术[J]. 石油钻探技术, 2020, 48(2): 29-33.WANG Jianhua, YAN Lili, XIE Sheng, et al. Oil-based drilling fluid technology for high pressure brine layer in Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29-33. [25] 李雄, 董晓强, 金军斌, 等. 超高温高密度钻井液体系的研究与应用[J]. 钻井液与完井液, 2020, 37(6): 694-700.LI Xiong, DONG Xiaoqiang, JIN Junbin, et al. Study and application of an ultra-high temperature high density drilling fluid[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 694-700.