LIU Huibin, LI Jianhua, PANG Heshan, ZHENG Huikai, LIU Dongqing, SUN Xinghua, SONG Weibin. Ultra-high Temperature Cement Slurry for Cementing Well GR1 Penetrating Hot Dry Rock Formations in Gonghe Basin, Qinghai[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 202-208. doi: 10.3969/j.issn.1001-5620.2020.02.012
Citation: LIU Huibin, LI Jianhua, PANG Heshan, ZHENG Huikai, LIU Dongqing, SUN Xinghua, SONG Weibin. Ultra-high Temperature Cement Slurry for Cementing Well GR1 Penetrating Hot Dry Rock Formations in Gonghe Basin, Qinghai[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 202-208. doi: 10.3969/j.issn.1001-5620.2020.02.012

Ultra-high Temperature Cement Slurry for Cementing Well GR1 Penetrating Hot Dry Rock Formations in Gonghe Basin, Qinghai

doi: 10.3969/j.issn.1001-5620.2020.02.012
  • Received Date: 2019-11-24
  • Publish Date: 2020-04-28
  • The job quality of well cementing is the key factor affecting the borehole quality of a well penetrating hot dry rock formations. The major technical difficulties in cementing the wells penetrating hot dry rock formations in the Gonghe Basin in Qinghai were determined by studying the geological characteristics and the conditions for the hot dry rock to exist. An ultra-high temperature cement slurry for cementing the wells was formulated with a high temperature retarder BCR-320L and a high temperature filter loss reducer BXF-200L (AF), based on the investigation of strength decline mechanisms of the set cement with different concentrations of silica powder. Laboratory experimental results showed that the cement slurry can be used to cement wells at circulation temperature of 200℃. The cement slurry has good rheology and adjustable thickening time. The strength of the set cement does not decline at 200℃, and the compressive strength of the cement slurry after aging 72 h is 44.1 MPa. This cement slurry has been successfully used in cementing the well GR1 which penetrated hot dry rock formations in the Gonghe Basin in Qinghai. The quality of the cementing job was excellent. This cementing technology has provided a reference for subsequent hot dry rock well cementing.

     

  • [1]
    汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32):25-31.

    WANG Jiyang, HU Shengbiao, PANG Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32):25-31.
    [2]
    TESTER J W, ANDERSON B J, BATCHELOR A S, et al. The future of geothermal energy-impact of enhanced geothermal systems(EGS)on the United States in the 21th Century[R]. Boston:Massachusetts Institute of Technology, 2006.
    [3]
    许天福,张延军,曾昭发,等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32):42-45.

    XU Tianfu, ZHANG Yanjun, ZENG Zhaofa, et al. Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science & Technology Review, 2012, 30(32):42-45.
    [4]
    蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5):807-811.

    LIN Wenjing, LIU Zhiming, MA Feng, et al. An estimation of HDR resources in China's mainland[J]. Acta Geoscientica Sinica, 2012, 33(5):807-811.
    [5]
    POLSKY Y, CAPUANO L J, FINGER J, et al. Enhanced geothermal systems(EGS) well construction technology evaluation report[J]. Physical Review D, 2008, 17(10):2529-2551.
    [6]
    张森琦, 严维德, 黎敦朋, 等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 2018, 45(6):1087-1102.

    ZHANG Senqi, YAN Weide, LI Dunpeng, et al. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Chinese Geology, 2018, 45(6):1087-1102.
    [7]
    梁文利. 干热岩钻井液技术新进展[J]. 钻井液与完井液, 2018, 35(4):7-13.

    LIANG Wenli.Progress in study on drilling fluid technology for hot dry rock drilling[J].Drilling Fluid & Completion Fluid, 2018, 35(4):7-13.
    [8]
    郑宇轩, 单文军, 赵长亮, 等. 青海共和干热岩GR1井钻井工艺技术[J]. 地质与勘探, 2018, 54(5):1038-1045.

    ZHENG Yuxuan, SHAN Wenjun, ZHAO Changliang, et al. The drilling technology for the GR1 well in hotdry rock of Gonghe, Qinghai province[J]. Geology and Prospecting, 2018, 54(5):1038-1045.
    [9]
    符军放. 掺硅粉高水灰比水泥石高温强度衰退现象分析[J]. 钻井液与完井液, 2017, 34(1):112-115.

    FU Junfang.Analysis of high temperature strength retrogression of high water/cement ratio set cement with silica powder[J].Drilling Fluid & Completion Fluid, 2017, 34(1):112-115.
    [10]
    路飞飞, 李斐, 田娜娟, 等. 复合加砂抗高温防衰退水泥浆体系[J]. 钻井液与完井液, 2017, 34(4):85-89.

    LU Feifei, LI Fei, TIAN Najuan, et al.High temperature anti strength retrogression cement slurry with compounded silica powder[J].Drilling Fluid & Completion Fluid, 2017, 34(4):85-89.
  • Relative Articles

    [1]XIAO Jingnan, LI Xiaojiang, ZHOU Shiming, WEI Haoguang, YANG Hongqi. Ultra-high Temperature Resistant Cement Slurry and Its Application in Hot Dry Rock[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(1): 92-97. doi: 10.12358/j.issn.1001-5620.2024.01.010
    [2]YAN Ruichang, XU Ming, YU Haifa, LUO Yucai, FEI Zhongming, QIU Aimin, JIA Lijun. Well Cementing Technology for Complex Reservoirs in the Bayan Hetao Basin[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(1): 82-88. doi: 10.12358/j.issn.1001-5620.2023.01.011
    [3]DANG Donghong, LIU Ningze, WANG Dan, MEI Kaiyuan, CHENG Xiaowei, SUN Xingjia. Control Measures of Cement High-temperature Deterioration Performance under Dry-hot Rock Conditions[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(3): 368-375. doi: 10.12358/j.issn.1001-5620.2023.03.013
    [4]YU Yongjin, ZHANG Hang, XIA Xiujian, LI Pengpeng, JIN Jianzhou, HU Miaomiao, GUO Jintang. Synthesis and Study of an Ultra-High Temperature Filtrate Reducer for Cement Slurries[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(3): 352-358. doi: 10.12358/j.issn.1001-5620.2022.03.014
    [5]ZHANG Guoguang, WANG Chunyu, DAI Dan, YAO Xiao, CHEN Weixing, GENG Chenzi, HU Fang. The Effects of Particle Size of Silica Flour on the Performance of Oil Well Cement at High Temperature and High Pressure[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(4): 466-471. doi: 10.12358/j.issn.1001-5620.2022.04.011
    [6]CHEN Rongyao, SONG Jianjian, WU Zhongtao, SHI Ligang, ZHAO Jun, WANG Xuechun, LIU Shikang. High Temperature High Density Cement Slurry with Corrosion Inhibition Property[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(5): 601-607. doi: 10.12358/j.issn.1001-5620.2022.05.011
    [7]ZHAO Jiansheng, DAI Qing, HUO Jinhua, LI Yang. Preparation and Application of Fluid Loss Additive GT-1 for High Temperature Cementing Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(2): 234-240. doi: 10.12358/j.issn.1001-5620.2022.02.017
    [8]ZHOU Chongfeng, FEI Zhongming, LI Dewei, ZHAO Jiangbo, JIANG Shiwei, LIU Huiting, XU Ming. Research on A New Material to Prevent the Strength Decline of Set Cement Under Ultra-High Temperature[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(1): 71-75. doi: 10.12358/j.issn.1001-5620.2022.01.012
    [9]LI Fei. Study on Optimization of High Temperature Cement Slurry with Elasticity and Toughness[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(5): 623-627. doi: 10.12358/j.issn.1001-5620.2021.05.013
    [10]WANG Jingpeng, XIONG Youming, LU Zongyu, YANG Jixiang, SHI Jiangang, WU Jiwei, YAN Zhi. Study on Salt-Resistant High Density Cement Slurry Technology for Ultra-Deep Wells[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(5): 634-640. doi: 10.3969/j.issn.1001-5620.2021.05.015
    [11]XIN Haipeng, WU Dahua, ZHANG Minghui, DENG Qiang, WANG Jianyao, ZENG Jianguo. Explore and Study on Well Cementing Anti-Water-Channeling Self-Healing Agent[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 221-225. doi: 10.3969/j.issn.1001-5620.2020.02.015
    [12]LIU Jingli, PENG Song, HE Wu, Zhang Ming, HUO Rujun, JI Weiqiang, YANG Yuhang, FU Yueying. A High Temperature Stabilizer for Set Cement[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(3): 367-370. doi: 10.3969/j.issn.1001-5620.2020.03.017
    [13]DANG Donghong, GUO Wenmeng, LI Lijun, LI Dong, SHEN Lei, MA Qianyun, CHEN Dacang. Normal Injection, Reverse Squeeze and Intermediate Diversion: A Technology for Cementing the Complex Well **1-H*[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(3): 371-376. doi: 10.3969/j.issn.1001-5620.2020.03.018
    [14]ZHANG Hua, JIN Jianzhou, LIU Mingtao, XIAO Yunfeng, ZHANG Xiaobing, GUO Jintang, ZHANG Tongying. A 350 ℃ High Temperature Silicate Cement Slurry Used in Cementing Heavy Oil Thermal Production Wells[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(3): 363-366. doi: 10.3969/j.issn.1001-5620.2020.03.016
    [15]LI Zaoyuan, ZHAO Jun, WANG Xiyong, ZHENG Guanyi, LUO Deming, FU Tiesong. Study and Application of High Temperature Settling Stability of Cementing Slurry Used in Cementing Well Chuanshen-1[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(3): 338-343,348. doi: 10.3969/j.issn.1001-5620.2019.03.013
    [16]LIU Jingli, PENG Song, WANG Ye, HE Jingchao, YAO Xiaojun, BI Yi, ZHANG Xin, HE Xingwei. Cementing Low-rank Coal Bed with Ultra-low Density Cement Slurry in Erlian Basin[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(3): 344-348. doi: 10.3969/j.issn.1001-5620.2019.03.014
    [17]YU Yongjin, DING Zhiwei, ZHANG Chi, ZHANG Hua, GUO Jintang. A Cement Slurry Used at Ultra-high Circulation Temperature of 210℃[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(3): 349-354. doi: 10.3969/j.issn.1001-5620.2019.03.015
    [18]ZHANG Chi, CHEN Xiaoxu, LI Changkun, WANG Yu, YU Yongjin, DING Zhiwei. Study of High Temperature Silicate Cement Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(5): 62-66. doi: 10.3969/j.issn.1001-5620.2017.05.012
    [19]FU Junfang. Analysis of High Temperature Strength Retrogression of High Water/Cement Ratio Set Cement with Silica Powder[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(1): 112-115. doi: 10.3969/j.issn.1001-5620.2017.01.021
    [20]SONG Benling, ZHANG Naifu, ZHANG Weibin, WEI Jijun, LU Haichuan, SUN Xiaojie. Cement Slurry Used in Block Faja Venezuela[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(4): 92-96. doi: 10.3969/j.issn.1001-5620.2016.04.019
  • Cited by

    Periodical cited type(8)

    1. 肖京男,李小江,周仕明,魏浩光,杨红歧. 干热岩超高温防衰退水泥浆体系及应用. 钻井液与完井液. 2024(01): 92-97 . 本站查看
    2. 李宽,施山山,张新刚,王跃伟,许洁,张恒春. 干热岩定向钻井关键技术研究与应用. 钻采工艺. 2024(05): 7-14 .
    3. 于永金,夏修建,王治国,廖富国,刘斌辉,丁志伟. 深井、超深井固井关键技术进展及实践. 新疆石油天然气. 2023(02): 24-33 .
    4. 徐小峰,宋巍,杨燕,李祥银,周岩,冯福平,韩旭,刘圣源. 页岩储层水平井固井水泥浆体系应用研究进展. 科学技术与工程. 2023(17): 7161-7173 .
    5. 陈立超,王生维,张典坤,张超鹏,王扶静. 油气井碳纳米管(CNTs)复合固井水泥断裂性能热损伤机制. 材料科学与工程学报. 2023(06): 912-918 .
    6. 李根生,武晓光,宋先知,周仕明,李铭辉,朱海燕,孔彦龙,黄中伟. 干热岩地热资源开采技术现状与挑战. 石油科学通报. 2022(03): 343-364 .
    7. 张新玉,张海峰,李锴,汪超. 青海省“一谷两盆”地区互补发展SWOT分析. 内蒙古科技与经济. 2021(03): 18-20 .
    8. 何淼,龚武镇,许明标,宋建建. 干热岩开发技术研究现状与展望分析. 可再生能源. 2021(11): 1447-1454 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.1 %FULLTEXT: 25.1 %META: 73.1 %META: 73.1 %PDF: 1.9 %PDF: 1.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.3 %其他: 2.3 %其他: 0.3 %其他: 0.3 %China: 0.5 %China: 0.5 %Germany: 0.1 %Germany: 0.1 %[]: 0.3 %[]: 0.3 %上海: 16.1 %上海: 16.1 %东营: 0.1 %东营: 0.1 %京都: 0.1 %京都: 0.1 %克拉玛依: 0.1 %克拉玛依: 0.1 %北京: 4.7 %北京: 4.7 %南京: 0.3 %南京: 0.3 %台州: 0.2 %台州: 0.2 %咸阳: 0.1 %咸阳: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.1 %唐山: 0.1 %塔城: 0.1 %塔城: 0.1 %大同: 0.1 %大同: 0.1 %天津: 0.3 %天津: 0.3 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.1 %宣城: 0.1 %巴音郭楞: 0.3 %巴音郭楞: 0.3 %广州: 0.1 %广州: 0.1 %廊坊: 0.2 %廊坊: 0.2 %张家口: 1.4 %张家口: 1.4 %徐州: 0.1 %徐州: 0.1 %成都: 0.7 %成都: 0.7 %无锡: 0.2 %无锡: 0.2 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %杭州: 0.1 %杭州: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %盐城: 0.1 %盐城: 0.1 %盘锦: 0.3 %盘锦: 0.3 %石家庄: 0.1 %石家庄: 0.1 %芒廷维尤: 45.6 %芒廷维尤: 45.6 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 17.1 %西宁: 17.1 %西安: 0.2 %西安: 0.2 %许昌: 0.1 %许昌: 0.1 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.5 %贵阳: 0.5 %达州: 0.2 %达州: 0.2 %达拉斯: 0.2 %达拉斯: 0.2 %运城: 0.5 %运城: 0.5 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.1 %邯郸: 0.1 %重庆: 0.4 %重庆: 0.4 %长春: 0.1 %长春: 0.1 %长沙: 0.3 %长沙: 0.3 %青岛: 0.2 %青岛: 0.2 %驻马店: 4.8 %驻马店: 4.8 %其他其他ChinaGermany[]上海东营京都克拉玛依北京南京台州咸阳哥伦布唐山塔城大同天津宝鸡宣城巴音郭楞广州廊坊张家口徐州成都无锡昆明晋城杭州榆林武汉沈阳温州湖州盐城盘锦石家庄芒廷维尤芝加哥苏州衡阳衢州西宁西安许昌诺沃克贵阳达州达拉斯运城遵义邯郸重庆长春长沙青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1465) PDF downloads(182) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return