Citation: | DANG Donghong, LIU Ningze, WANG Dan, et al.Control measures of cement high-temperature deterioration performance under dry-hot rock conditions[J]. Drilling Fluid & Completion Fluid,2023, 40(3):368-375 doi: 10.12358/j.issn.1001-5620.2023.03.013 |
[1] |
柴瑞瑞,李纲. 可再生清洁能源与传统能源清洁利用: 发电企业能源结构转型的演化博弈模型[J]. 系统工程理论与实践,2022,42(1):184-197.
CHAI Ruirui, LI Gang. Renewable clean energy and clean utilization of traditional energy: An evolutionary game model of energy structure transformation of power enterprises[J]. Systems Engineering-Theory & Practice, 2022, 42(1):184-197.
|
[2] |
崔荣国,郭娟,程立海,等. 全球清洁能源发展现状与趋势分析[J]. 地球学报,2021,42(2):179-186.
CUI Rongguo, GUO Juan, CHENG Lihai, et al. Status and trends analysis of global clean energies[J]. Acta Geoscientica Sinica, 2021, 42(2):179-186.
|
[3] |
王沣浩,蔡皖龙,王铭,等. 地热能供热技术研究现状及展望[J]. 制冷学报,2021,42(1):14-22.
WANG Fenghao, CAI Wanlong, WANG Ming, et al. Status and outlook for research on geothermal heating technology[J]. Journal of Refrigeration, 2021, 42(1):14-22.
|
[4] |
黄璜,刘然,李茜,等. 地热能多级利用技术综述[J]. 热力发电,2021,50(9):1-10.
HUANG Huang, LIU Ran, LI Qian, et al. Overview on multi-level utilization techniques of geothermal energy[J]. Thermal Power Generation, 2021, 50(9):1-10.
|
[5] |
HUANG W, CAO W, JIANG F. A novel single-well geothermal system for hot dry rock geothermal energy exploitation[J]. Energy, 2018, 162:44-630.
|
[6] |
MA Z, PENG L, LI J, et al. The situation analysis of hot dry rock geothermal energy development in China-based on structural equation modeling[J]. Heliyon, 2022, 8(12):e12123.
|
[7] |
ZHANG Wenyang, MA Yong, YANG Ruoyu, et al. Effects of ethylene diamine tetraacetic acid and calcium nitrate on high-temperature cementing slurry in a large temperature difference environment[J]. Construction and Building Materials, 2023, 368:130387.
|
[8] |
YIN Weitao, ZHAO Yangsheng, FENG Zijun. Experimental research on the rupture characteristics of fractures subsequently filled by magma and hydrothermal fluid in hot dry rock[J]. Renewable Energy, 2019(139):71-79.
|
[9] |
杨雨,徐拴海,张浩,等. 地热井高导热低密度固井材料制备、性能及结构[J]. 钻井液与完井液,2021,38(1):93-101.
YANG Yu, XU Shuanhai, ZHANG Hao, et al. Preparation properties and structure of high heat conduction and low density cementing materials for geothermal wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):93-101.
|
[10] |
王成文,陈新,周伟,等. 纳米SiO2溶胶缓解油井水泥高温强度衰退的作用机理[J]. 天然气工业,2019,39(3):72-79.
WANG Chengwen, CHEN Xin, ZHOU Wei, et al. Working mechanism of nano-SiO2 sol to alleviate the strength decline of oil well cement under high temperature[J]. Natural Gas Industry, 2019, 39(3):72-79.
|
[11] |
焦少卿,何龙,郭小阳,等. 高温多功能防气窜水泥浆体系在四川盆地海相超深井中的成功应用[J]. 钻井液与完井液,2020,37(4):20-512.
JIAO Shaoqing, HE Long, GUO Xiaoyang, et al. Successful application of high temperature multi-functional gas channeling preventing cement slurry in marine ultra deep wells in Sichuan basin[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):20-512.
|
[12] |
桑来玉. 硅粉对水泥石强度发展影响规律[J]. 钻井液与完井液,2004,21(6):3-41, 49.
SANG Laiyu. Law of silica powder influence on cement stone strength development[J]. Driuing Fluid & Completion Fluld, 2004, 21(6):3-41, 49.
|
[13] |
徐永辉. 深井水泥水化机理研究[D]. 大庆: 东北石油大学, 2007.
XU Yonghui. A study of cement hydration mechanism in deep wells[D]. Daqing: Northeast Petroleum University, 2007.
|
[14] |
姚晓,葛荘,汪晓静,等. 加砂油井水泥石高温力学性能衰退机制研究进展[J]. 石油钻探技术,2018,46(1):17-23.
YAO Xiao, GE Zhuang, WANG Xiaojing, et al. Research progress of degradation of mechanical properties of sand-containing cement in high temperature regimes[J]. Petroleum Drilling Techniques, 2018, 46(1):17-23.
|
[15] |
孙浩. 稠油火驱水泥石长期密封性能实验研究[D]. 成都: 西南石油大学, 2018.
SUN Hao. Experimental study on long-term sealing performance of cement stone under in-situ combustion[D]. Chengdu: Southwest Petroleum University, 2018.
|
[16] |
赵昆鹏,王涛,郭春,等. 高温下赤泥与硅粉协同强化固井水泥石力学性能[J]. 中国粉体技术,2023,29(2):74-80.
ZHAO Kunpeng, WANG Tao, GUO Chun, et al. Mechanical properties of cement stone reinforced by red mud and silicon fume at high temperature[J]. China Powder Science and Technology, 2023, 29(2):74-80.
|
[17] |
WEI T, CHENG X, GU T, et al. The change and influence mechanism of the mechanical properties of tricalcium silicate hardening at high temperature[J]. Construction and Building Materials, 2021, 308:125065.
|
[18] |
WEI T, CHENG X, LIU H, et al. Crystallization of tricalcium silicate blended with different silica powder dosages at high temperature[J]. Construction and Building Materials, 2022, 316:125884.
|
[19] |
李华,吴笑梅,樊粤明. 烧成温度对低热水泥性能的影响及其机理研究[J]. 水泥,2007(7):22-5.
LI Hua, WU Xiaomei, FAN Yueming. Effect of sintering temperature on performance of law-heat portland cement and its mechanism[J]. Cement, 2007(7):22-5.
|
[20] |
CUESTA A, AYUELA A, ARANDA MAG. Belite cements and their activation[J]. Cement Concrete Research, 2021(140):106319.
|
[21] |
汪智勇,王敏,文寨军,等. 硅酸二钙及以其为主要矿物的低钙水泥的研究进展[J]. 材料导报,2016,30(1):8-73.
WANG Zhiyong, WANG Min, WEN Zhaijun, et al. Progress on study of dicalcium silicate and low calcium cement with dicalcium silicate as a main mineral composition[J]. Materials Review, 2016, 30(1):8-73.
|
[22] |
STANĚK T, SULOVSKÝ P. Active low-energy belite cement[J]. Cement and Concrete Research, 2015(68):203-210.
|