YU Yongjin, ZHANG Hang, XIA Xiujian, et al.Synthesis and study of an ultra-high temperature filtrate reducer for cement slurries[J]. Drilling Fluid & Completion Fluid,2022, 39(3):352-358 doi: 10.12358/j.issn.1001-5620.2022.03.014
Citation: YU Yongjin, ZHANG Hang, XIA Xiujian, et al.Synthesis and study of an ultra-high temperature filtrate reducer for cement slurries[J]. Drilling Fluid & Completion Fluid,2022, 39(3):352-358 doi: 10.12358/j.issn.1001-5620.2022.03.014

Synthesis and Study of an Ultra-High Temperature Filtrate Reducer for Cement Slurries

doi: 10.12358/j.issn.1001-5620.2022.03.014
  • Received Date: 2022-01-10
  • Accepted Date: 2022-02-28
  • Rev Recd Date: 2022-02-18
  • Publish Date: 2022-05-30
  • An ultra-high temperature filtrate reducer, F-SHT, was developed for formulating cement slurries used in ultra-deep wells and complex wells with ultra-high well temperatures. The development of F-SHT has broken through the bottleneck of ultra-high temperature water loss control of conventional filter loss reducers for cement slurries. Characterization of the molecular structure and performance evaluation of F-SHT showed that F-SHT has a number average molecular weight of 21,475 Da and low apparent viscosity which is benefit to the formulation of cement slurries. Significant thermal weight loss occurred when the temperature reaches 294 ℃, indicating that the molecular chains of F-SHT has good thermal stability. F-SHT can effectively control the fluid loss of cement slurries at temperatures up to 240 ℃ and in salt-saturated cement slurries. In static filtration test, a salt-saturated cement slurry treated with F-SHT had API filtration rate of 38 mL at 240 ℃/6.9 MPa. In general performance testing, the performance of the cement slurry at starting and halting of the machine, the stability and API filtration rate of the cement slurry were all qualified. In cementing the Φ177.8 mm liner string of the well Heshen-1, F-SHT performed successfully; the cement slurry best suited the situation of the well condition, the quality of the well cementing job was good, and the well cementing job provided a strong support to the exploration of oil and gas resources buried in ultra-deep formations.

     

  • [1]
    潘继平. “十四五”油气增储上产的政策困境及对策建议[J]. 石油科技论坛,2021,40(1):7-14. doi: 10.3969/j.issn.1002-302x.2021.01.002

    PAN Jiping. Policy bottlenecks for increasing oil and gas reserves and production in 14th five-year plan period and suggestions on countermeasures[J]. Oil Forum, 2021, 40(1):7-14. doi: 10.3969/j.issn.1002-302x.2021.01.002
    [2]
    杜金虎,赵邦六,王喜双,等. 中国石油物探技术攻关成效及成功做法[J]. 中国石油勘探,2011,16(S1):1-7.

    DU Jinhu, ZHAO Bangliu, WANG Xishuang, et al. Achievements and successful experience of PetroChina in geophysical research[J]. China Petroleum Exploration, 2011, 16(S1):1-7.
    [3]
    罗晓容,张立宽,雷裕红,等. 储层结构非均质性及其在深层油气成藏中的意义[J]. 中国石油勘探,2016,21(1):28-36. doi: 10.3969/j.issn.1672-7703.2016.01.003

    LUO Xiaorong, ZHANG Likuan, LEI Yuhong, et al. Structural heterogeneity of reservoirs and its implication on hydrocarbon accumulation in deep zones[J]. China Petroleum Exploration, 2016, 21(1):28-36. doi: 10.3969/j.issn.1672-7703.2016.01.003
    [4]
    刘学鹏,刘仍光. 油井水泥降失水剂的作用机理研究[J]. 化学研究与应用,2017,29(12):1928-1932. doi: 10.3969/j.issn.1004-1656.2017.12.027

    LIU Xuepeng, LIU Rengguang. Mechanisms involved in fluid loss control of oilwell cement slurries by water-soluble polymer[J]. Chemical Research and Application, 2017, 29(12):1928-1932. doi: 10.3969/j.issn.1004-1656.2017.12.027
    [5]
    卢甲晗,袁永涛,李国旗,等. 油井水泥抗高温抗盐降失水剂的室内研究[J]. 钻井液与完井液,2005,22(S1):67-68.

    LU Jiahan, YUAN Yongtao, LI Guoqi, et al. Study and application of a high temperature and salt resisting cement slurry system[J]. Drilling Fluid & Completion Fluid, 2005, 22(S1):67-68.
    [6]
    邹建龙,屈建省,吕光明,等. 新型固井降失水剂BXF-200L的研制与应用[J]. 钻井液与完井液,2005,22(2):20-23. doi: 10.3969/j.issn.1001-5620.2005.02.006

    ZOU Jianlong, QU Jiansheng, LYU Guangming, et al. A novel fluid loss additive BXF-200L for oilfield cement and its application[J]. Drilling Fluid & Completion Fluid, 2005, 22(2):20-23. doi: 10.3969/j.issn.1001-5620.2005.02.006
    [7]
    于永金,刘硕琼,刘丽雯,等. 高温水泥浆降失水剂DRF-120L的制备及评价[J]. 石油钻采工艺,2011,33(3):24-27. doi: 10.3969/j.issn.1000-7393.2011.03.007

    YU Yongjin, LIU Shuoqiong, LIU Liwen, et al. Preparation and evaluation of high temperature cement slurry loss reduction additive DRF-120L[J]. Oil Drilling & Production Technology, 2011, 33(3):24-27. doi: 10.3969/j.issn.1000-7393.2011.03.007
    [8]
    夏修建,于永金,靳建洲,等. 耐高温抗盐固井降失水剂的制备及性能研究[J]. 钻井液与完井液,2019,36(5):610-616. doi: 10.3969/j.issn.1001-5620.2019.05.015

    XIA Xiujian, YU Yongjin, JIN Jianzhou, et al. Preparation and performance of a high temperature resistant and salt-resistant fluid loss additive for cementing[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):610-616. doi: 10.3969/j.issn.1001-5620.2019.05.015
    [9]
    郭锦棠,喻文娟,肖淼,等. 海水水泥浆体系降失水剂LTF-100L的合成及性能[J]. 石油化工,2016,45(8):988-993. doi: 10.3969/j.issn.1000-8144.2016.08.017

    GUO Jintang, YU Wenjuan, XIAO Miao, et al. Synthesis and properties of LTF-100L fluid loss additive available in seawater-based cement slurry system[J]. Petrochemical Technology, 2016, 45(8):988-993. doi: 10.3969/j.issn.1000-8144.2016.08.017
    [10]
    李晓岚,郑志军,郭鹏. 高温油井水泥降失水剂ZFA-1的合成及性能[J]. 钻井液与完井液,2020,37(2):209-213. doi: 10.3969/j.issn.1001-5620.2020.02.013

    LI Xiaolan, ZHENG Zhijun, GUO Peng. Synthesis and performance of high temperature filter loss reducer ZFA-1 for oil well cement slurries[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):209-213. doi: 10.3969/j.issn.1001-5620.2020.02.013
    [11]
    李皋,付强,余杭航,等. 四元共聚抗高温抗盐油井水泥浆降失水剂的合成[J]. 天然气工业,2018,38(12):96-101. doi: 10.3787/j.issn.1000-0976.2018.12.011

    LI Gao, FU Qiang, YU Hanghang, et al. Synthesis and performance evaluation of quadripolymer as a temperature and salt-resistance oil well cement filtrate reducer[J]. Natural Gas Industry, 2018, 38(12):96-101. doi: 10.3787/j.issn.1000-0976.2018.12.011
    [12]
    WANG Fang, KONG Xiangming, WANG Dongmin, et al. The effects of nano-C-S-H with different polymer stabilizers on early cement hydration[J]. Journal of the American Ceramic Society, 2019, 102(9):1-14.
    [13]
    韩亮,唐欣,杨远光,等. 新型两性离子固井降失水剂的合成与性能评价[J]. 钻井液与完井液,2018,35(2):85-91. doi: 10.3969/j.issn.1001-5620.2018.02.014

    HAN Liang, TANG Xin, YANG Yuanguang, et al. Synthesis and evaluation of a new amphoteric filter loss reducer for cement slurry[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):85-91. doi: 10.3969/j.issn.1001-5620.2018.02.014
  • Relative Articles

  • Cited by

    Periodical cited type(9)

    1. 靳建洲,魏风奇,艾正青,马勇,张华,于永金. 超深特深油气井固井关键技术进展. 钻采工艺. 2024(02): 104-112 .
    2. 林鑫,刘硕琼,夏修建,孟仁洲. 热引发聚合方法制备抗240℃水泥浆降失水剂. 钻井液与完井液. 2024(01): 98-104 . 本站查看
    3. 李壮壮,杨振声,王亚茹,石娜娜,陈龙,关琳. 四元共聚抗高温耐盐粉体降失水剂的制备及性能研究. 现代化工. 2024(06): 191-197 .
    4. 牛志祥. 耐温纳米聚合物固井水泥缓凝剂的研制与评价. 能源化工. 2024(04): 47-51 .
    5. 徐大伟,汪晓静,徐春虎,魏浩光,常连玉. 且深1井盐层尾管超高温高密度固井水泥浆技术. 钻井液与完井液. 2024(05): 622-629 . 本站查看
    6. 邹亦玮,王义昕,朱思佳,宋维凯,罗宇维,汤雨霖. 分散聚合法制备固井降失水剂及性能研究. 钻井液与完井液. 2024(06): 784-791 . 本站查看
    7. 胡蝶. 低密度早强固井水泥浆体系研究. 中国石油和化工标准与质量. 2023(03): 10-12+15 .
    8. 徐小峰,宋巍,杨燕,李祥银,周岩,冯福平,韩旭,刘圣源. 页岩储层水平井固井水泥浆体系应用研究进展. 科学技术与工程. 2023(17): 7161-7173 .
    9. 王其可,刘文明,凌勇,许艺馨,张航,段云刚,郭锦棠. ATP负载杂环两性共聚物型超高温降失水剂的合成与性能评价. 钻井液与完井液. 2023(05): 629-636 . 本站查看

    Other cited types(1)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.7 %FULLTEXT: 24.7 %META: 70.5 %META: 70.5 %PDF: 4.8 %PDF: 4.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.7 %其他: 2.7 %其他: 0.5 %其他: 0.5 %China: 0.5 %China: 0.5 %Corona: 0.2 %Corona: 0.2 %United States: 0.1 %United States: 0.1 %[]: 0.2 %[]: 0.2 %三明: 0.2 %三明: 0.2 %上海: 37.4 %上海: 37.4 %东莞: 0.5 %东莞: 0.5 %东营: 0.4 %东营: 0.4 %中卫: 0.2 %中卫: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %克拉玛依: 0.2 %克拉玛依: 0.2 %兰州: 0.2 %兰州: 0.2 %加州: 0.2 %加州: 0.2 %北京: 3.8 %北京: 3.8 %南京: 0.6 %南京: 0.6 %台州: 0.2 %台州: 0.2 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈密: 0.1 %哈密: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %大庆: 0.1 %大庆: 0.1 %天津: 1.8 %天津: 1.8 %太原: 0.3 %太原: 0.3 %宣城: 0.2 %宣城: 0.2 %巴格达: 0.2 %巴格达: 0.2 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %常德: 0.2 %常德: 0.2 %张家口: 3.4 %张家口: 3.4 %德阳: 0.2 %德阳: 0.2 %悉尼: 0.2 %悉尼: 0.2 %成都: 2.1 %成都: 2.1 %新乡: 0.3 %新乡: 0.3 %新德里: 0.2 %新德里: 0.2 %昆明: 0.2 %昆明: 0.2 %晋城: 0.2 %晋城: 0.2 %杭州: 0.2 %杭州: 0.2 %枣庄: 0.1 %枣庄: 0.1 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.2 %沧州: 0.2 %济南: 0.2 %济南: 0.2 %海南: 0.1 %海南: 0.1 %淮安: 0.2 %淮安: 0.2 %深圳: 0.1 %深圳: 0.1 %湖州: 0.4 %湖州: 0.4 %烟台: 0.1 %烟台: 0.1 %焦作: 0.1 %焦作: 0.1 %盘锦: 0.2 %盘锦: 0.2 %石家庄: 0.5 %石家庄: 0.5 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 5.5 %芒廷维尤: 5.5 %芝加哥: 0.2 %芝加哥: 0.2 %苏黎世: 0.2 %苏黎世: 0.2 %衢州: 0.3 %衢州: 0.3 %西宁: 15.9 %西宁: 15.9 %西安: 0.5 %西安: 0.5 %诺沃克: 2.4 %诺沃克: 2.4 %贵阳: 1.6 %贵阳: 1.6 %资阳: 0.2 %资阳: 0.2 %运城: 0.9 %运城: 0.9 %遵义: 0.2 %遵义: 0.2 %郑州: 0.9 %郑州: 0.9 %都伯林: 0.2 %都伯林: 0.2 %重庆: 0.4 %重庆: 0.4 %银川: 0.1 %银川: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.3 %长治: 0.3 %青岛: 0.2 %青岛: 0.2 %驻马店: 8.6 %驻马店: 8.6 %黔南: 0.1 %黔南: 0.1 %其他其他ChinaCoronaUnited States[]三明上海东莞东营中卫乌鲁木齐克拉玛依兰州加州北京南京台州合肥呼和浩特哈密哈尔滨大庆天津太原宣城巴格达巴音郭楞常德张家口德阳悉尼成都新乡新德里昆明晋城杭州枣庄武汉沈阳沧州济南海南淮安深圳湖州烟台焦作盘锦石家庄秦皇岛绵阳芒廷维尤芝加哥苏黎世衢州西宁西安诺沃克贵阳资阳运城遵义郑州都伯林重庆银川长沙长治青岛驻马店黔南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (922) PDF downloads(73) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return