LI Zhujun, HAN Cheng, WEI Anchao, LIU Xianyu, YANG Yuhao. The Technology of Setting Cement Plug for Offshore Ultra High Temperature and Ultra High Pressure Abandoned Wells[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(5): 617-621. doi: 10.3969/j.issn.1001-5620.2019.05.016
Citation: LI Zhujun, HAN Cheng, WEI Anchao, LIU Xianyu, YANG Yuhao. The Technology of Setting Cement Plug for Offshore Ultra High Temperature and Ultra High Pressure Abandoned Wells[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(5): 617-621. doi: 10.3969/j.issn.1001-5620.2019.05.016

The Technology of Setting Cement Plug for Offshore Ultra High Temperature and Ultra High Pressure Abandoned Wells

doi: 10.3969/j.issn.1001-5620.2019.05.016
  • Received Date: 2019-06-07
  • Publish Date: 2019-10-30
  • High density abandonment well plugs are set for ultra high temperature ultra high pressure exploratory wells drilled in Yingqiong Basin. Several problems, such as the conflict between mobility and sedimentation stability of the cement slurry, deterioration of the strength of the set cement, long section of cementing, big temperature difference, slow strength development at the top of cement, narrow safe drilling windows, loss of cement slurry and gas channeling etc., were encountered when setting the abandonment plugs. Several measures were taken to resolve these problems. First, spherical manganese ore powder was used to weight the cement slurry and to improve the rheology and sedimentation stability of the cement slurry. Second, a high temperature filming anti gas channeling agent was used to mitigate the risk of gas channeling. Third, an optimized amount of micro silica was used to increase the high temperature compressive strength of the set cement. Fourth, the quality of the spacer was optimized to enhance its ability to prevent loss of cement slurry. Finally, the cement slurry was squeezed into the hole to eliminate potential downhole problems. These measures have been successfully used in cement wells with maximum static bottom hole temperature of 213℃, and the highest density of cement slurry used was 2.50 g/cm3. Field operation showed that the cement slurry for setting abandonment plug has good mobility and sedimentation stability. The high temperature strength of the set cement developed fast and did not deteriorate. The cement slurry had stable thickening time, good anti-channeling and cement slurry loss preventing performance. All high pressure gas zones were successfully sealed off.

     

  • [1]
    牛新明,张克坚,丁士东,等. 川东北地区高压防气窜固井技术[J]. 石油钻探技术,2008,36(3):10-15.

    NIU Xinmin, ZHANG Kejian, DING Shidong, et al. Gas migration prevention cementing technologies in Northeast Sichuan Area[J]. Petroleum Dilling Techniques, 2008, 36(3):10-15.
    [2]
    舒福昌,向兴金.高密度防气窜水泥浆[J].天然气工业, 2007,27(8):72-74.

    SHU Fuchan, XIANG Xingjin. High-density cement slurry combating gas migration[J]. Natural Gas Industry, 2007, 27(8):72-74.
    [3]
    丁士东,张卫东. 国内外防气窜固井技术[J]. 石油钻探技术,2002,30(5):35-38.

    DING Shidong, ZHANG Weidong. Domestic & oversea cementing techniques of gas-channeling prevention[J]. Petroleum Drilling Techniques, 2002, 30(5):35-38.
    [4]
    郭小阳,杨远光,徐璧华,等. 安4井超高压固井技术研究[J]. 西南石油学院学报,1999,21(1):43-47.

    GUO Xiaoyang, YANG Yuanguang, XU Bihua, et al. Research on the supra-high pressure cementing techniques[J]. Journal of Southwest Petroleum Institute, 1999,21(1):43-47.
    [5]
    姚勇, 尹宗国, 焦建芳, 等. 官深1井超高密度水泥浆固井技术[J]. 石油钻探技术,2013,41(1):118-122.

    YAO Yong, YIN Zongguo, JIAO Jianfang, et al. Cementing with ultra-high density slurry in well Guanshen-1[J]. Petroleum Dilling Techniques, 2013, 41(1):118-122.
    [6]
    王振昌, 李宝贵, 苏洪生, 等.霍10井超高密度水泥浆固井技术[J]. 钻井液与完井液,2004,21(3):31-33.

    WANG Zhenchang, LI Baogui, SU Hongsheng, et al. Cementing technology of ultra-high density cement slurry in Huo-10[J]. Drilling Fluid & Completion Fluid, 2004, 21(3):31-33.
    [7]
    钟福海, 费中明, 高飞, 等.高密度防窜水泥浆在红北1井的应用[J]. 钻井液与完井液, 2016, 33(6):91-94.

    ZHONG Fuhai, FEI Zhongming, GAO Fei, et al. Antichanneling high density cement slurry used in cementing well Hongbei-1[J]. Drilling Fluid & Completion Fluid, 2016, 33(6):91-94.
    [8]
    张玉平,杨远光,宋元洪,等. 超高温超高密度防气窜水泥浆[J]. 钻井液与完井液,2015,32(4):51-54.

    ZHANG Yuping, YANG Yuanguang, SONG Yuanhong, et al. Ultra high temperature and ultra-high density cement slurry with gas-channeling inhibition[J]. Drilling Fluid & Completion Fluid, 2015, 32(4):51-54.
    [9]
    瞿佳. 大温差超高密度水泥浆固井技术研究与应用[J]. 钻采工艺,2012,35(3):17-20.

    QU Jia. Research and application of cementing technology of high differential temperature ultrahigh density cement slurry[J]. Drilling & Production Technology, 2012, 35(3):17-20.
    [10]
    岳家平,徐翔,李早元,等. 高温大温差固井水泥浆体系研究[J]. 钻井液与完井液,2012,29(2):59-62.

    YUE Jiaping, XU Xiang, LI Zaoyuan, et al. Research on high temperature and large temperature difference cement slurry system[J]. Drilling Fluid & Completion Fluid, 2012, 29(2):59-62.
    [11]
    韩成,邱正松,黄维安. 四氧化三锰水基钻井液润滑性能评价与研究[J]. 钻井液与完井液,2014,31(2):6-8.

    HAN Cheng, QIU Zhengsong, HUANG Wei'an. Research on the lubricity of drilling fluid weighted with Mn3O4[J]. Drilling Fluid & Completion Fluid, 2014, 31(2):6-8.
    [12]
    韩成,邱正松,黄维安,等. 新型高密度钻井液加重剂Mn3O4的研究及性能评价[J]. 西安石油大学学报(自然科学版),2014,29(2):89-93. HAN Cheng, QIU Zhengsong, HUANG Wei'an,et al. Performance evaluation of high-density drilling fluid weighting agent Mn3O4[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2014,29(2):89-93.
    [13]
    温雪丽,魏周胜,李波,等. 高温水泥浆体系研究与应用[J]. 钻井液与完井液,2011,28(5):51-53.

    WEN Xueli, WEI Zhousheng, LI Bo, et al. Study on high temperature cement slurry system[J]. Drilling Fluid & Completion Fluid, 2011, 28(5):51-53.
    [14]
    桑来玉. 硅粉对水泥石强度发展影响规律[J]. 钻井液与完井液,2004,21(6):41-43

    ,49. SANG Laiyu. Law of silica powder influence on cement stone strength development[J]. Drilling Fluid & Completion Fluid, 2004, 21(6):41-43,49.
  • Relative Articles

    [1]XIAO Jingnan, LI Xiaojiang, ZHOU Shiming, WEI Haoguang, YANG Hongqi. Ultra-high Temperature Resistant Cement Slurry and Its Application in Hot Dry Rock[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(1): 92-97. doi: 10.12358/j.issn.1001-5620.2024.01.010
    [2]XU Dawei, WANG Xiaojing, XU Chunhu, WEI Haoguang, CHANG Lianyu. Extra-High Temperature High Density Cement Slurry for Cementing Liners through Salt Formation in Well Qieshen-1[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(5): 622-629. doi: 10.12358/j.issn.1001-5620.2024.05.009
    [3]YU Lin, TAN Huijing, REN Yang, LIU Siyan, YE You. Study on the Influence of Elastic Toughness Cement Slurry Performance and Short-term Corrosion Mechanism under HPHTHS Conditions[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(2): 222-232. doi: 10.12358/j.issn.1001-5620.2023.02.011
    [4]ZHOU Chongfeng, FEI Zhongming, LI Dewei, ZHAO Jiangbo, JIANG Shiwei, LIU Huiting, XU Ming. Research on A New Material to Prevent the Strength Decline of Set Cement Under Ultra-High Temperature[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(1): 71-75. doi: 10.12358/j.issn.1001-5620.2022.01.012
    [5]YU Yongjin, ZHANG Hang, XIA Xiujian, LI Pengpeng, JIN Jianzhou, HU Miaomiao, GUO Jintang. Synthesis and Study of an Ultra-High Temperature Filtrate Reducer for Cement Slurries[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(3): 352-358. doi: 10.12358/j.issn.1001-5620.2022.03.014
    [6]LI Xiaolin, LI Jianhua, YANG Hongbin, LIU Wenming, QI Ben, LI Zhe, YU Jingyu. Study on Thermally Viscosifying Copolymer as a High Temperature Stabilizer for High Density Cement Slurries[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(1): 76-81. doi: 10.12358/j.issn.1001-5620.2022.01.013
    [7]ZHANG Guoguang, WANG Chunyu, DAI Dan, YAO Xiao, CHEN Weixing, GENG Chenzi, HU Fang. The Effects of Particle Size of Silica Flour on the Performance of Oil Well Cement at High Temperature and High Pressure[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(4): 466-471. doi: 10.12358/j.issn.1001-5620.2022.04.011
    [8]KANG Hongbing, NIU Chengcheng, JIA Hu, GAO Dingxiang, DAI Changlou. Ultra-High Temperature Workover Fluid with Flexible Rubber Particles Used in Shunbei Oilfield[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(4): 525-530. doi: 10.3969/j.issn.1001-5620.2021.04.020
    [9]WANG Jingpeng, XIONG Youming, LU Zongyu, YANG Jixiang, SHI Jiangang, WU Jiwei, YAN Zhi. Study on Salt-Resistant High Density Cement Slurry Technology for Ultra-Deep Wells[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(5): 634-640. doi: 10.3969/j.issn.1001-5620.2021.05.015
    [10]SONG He, YANG Wei, TANG Junfeng, LIU Cuiwei, WANG Jingpeng, LIN Zhiwei. Mechanical Performance of High Density Set Cement for HTHP Applications[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(6): 771-777. doi: 10.12358/j.issn.1001-5620.2021.06.018
    [11]LI Xiong, DONG Xiaoqiang, JIN Junbin, YANG Xiaohua. Study and Application of an Ultra-High Temperature High Density Drilling Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(6): 694-700. doi: 10.3969/j.issn.1001-5620.2020.06.003
    [12]YANG Yuhao, Wang Chenglong, HAN Cheng, WU Jiang, LI Wentuo, ZHANG Wandong. Running Suspended Cement Plug to Temporarily Isolate Reservoir in an Offshore HTHP Horizontal Gas Well[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(3): 345-350. doi: 10.3969/j.issn.1001-5620.2020.03.013
    [13]DANG Donghong, SONG Yuanhong, WU Yongchao, WANG Chong, HAN Gewei, WU Jinbo, YIN Lu. Pumping Cement Slurry and Drilling Set Cement Plug in High Pressure Open Hole Gas Well[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(1): 93-96. doi: 10.3969/j.issn.1001-5620.2019.01.018
    [14]LIAO Fengwu, LI Kunyu, HU Youlin, HE Fen, LI Yanjun, YUE Qiansheng. High Temperature High Density Drilling Fluid Technology for Drilling in Ying-Qiong Basin[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(5): 570-574. doi: 10.3969/j.issn.1001-5620.2019.05.008
    [15]XU Jie, WU Xiaoming, WANG Wenshi, YAN Jia, ZHANG Hengchun, CAO Longlong. Ultra-high Temperature Drilling Fluid Technology of Well Songke-2[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(2): 29-34,39. doi: 10.3969/j.issn.1001-5620.2018.02.004
    [16]YANG Yong, LUO Ming, WEI Anchao, HAN Cheng, LI Zhujun. Study and Application of Well Test Fluid for HTHP Wells in Ying-Qiong Basin in South China Sea[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(3): 124-128. doi: 10.3969/j.issn.1001-5620.2018.03.022
    [17]LU Feifei, LI Fei, TIAN Najuan, ZHU Wenhao. High Temperature Anti Strength Retrogression Cement Slurry with Compounded Silica Powder[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(4): 85-89. doi: 10.3969/j.issn.1001-5620.2017.04.016
    [18]ZHUANG Jianshan, SONG Yuanhong, GAO Fei, SUN Wanxing, CHEN Dacang, KONG Zhe, QU Lingxiao. Plug Flow Liner Cementing Technology for Ultra Deep Well in Piedmont Tarim[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(4): 83-86. doi: 10.3969/j.issn.1001-5620.2016.04.017
    [19]ZHONG Fuhai, FEI Zhongming, GAO Fei, SUN Wanxing, QIN Yi, ZHENG Yanli. Anti-channeling High Density Cement Slurry Used in Cementing Well Hongbei-1[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(6): 91-94. doi: 10.3969/j.issn.1001-5620.2016.06.016
    [20]SONG Yuanhong, YANG Yuanguang, ZHANG Yuping, YANG Haitao, HE Jianyong, HUANG Xia, LIU Hemin. Determination of Parameters Controlling Sedimentation Stability of High Density Cement Slurries[J]. DRILLING FLUID & COMPLETION FLUID, 2015, 32(6): 54-56. doi: 10.3969/j.issn.1001-5620.2015.06.014
  • Cited by

    Periodical cited type(10)

    1. 温达洋,肖伟,冯青豪,陈志鸣,于新虎,袁彬. 高温二氧化碳环境水泥石水化产物演化对其性能的影响. 油田化学. 2025(01): 30-37 .
    2. 赵常青,鲜明,冯予淇,叶雪松,吴青松. 深层页岩气水平井侧钻水泥塞技术. 石化技术. 2024(05): 121-123 .
    3. 李博. 东海X井油基泥浆环境下注水泥塞侧钻复杂情况处理分析. 化工管理. 2023(30): 144-147 .
    4. 马西旗,王超,徐鸿飞,高明星,刘占鏖,易先中,刘航铭. 机械振动对弃置井水泥塞性能影响的试验研究. 石油机械. 2022(09): 28-35 .
    5. 万浩东,周振宇,罗衡,毛炼,刘建雄,王林霄. 海上调整弃置井井筒泄漏分析与安全管理. 石油化工安全环保技术. 2022(06): 13-17+77+6 .
    6. 陈忠华,徐海军. 自制可调式蝶阀拆解工具在高温高压井中的应用. 化学工程与装备. 2021(02): 143-144 .
    7. 郭伟,娄益伟,韩成. 测试管汇在高温高压井井控中的应用. 化学工程与装备. 2021(05): 127-128+132 .
    8. 杨玉豪,王成龙,韩成,吴江,李文拓,张万栋. 海上高温高压天然气水平井临时隔离储层悬空水泥塞技术. 钻井液与完井液. 2020(03): 345-350 . 本站查看
    9. 蒋记伟,李军,柳贡慧,连威,杨宏伟. 基于Cohesive单元法的弃置井水泥塞-套管界面胶结失效数值模拟. 钻井液与完井液. 2020(03): 351-357 . 本站查看
    10. 刘鹏,李云,郭祥,杜晓栋. 北海油田废弃井处置标准对我国的借鉴意义. 石油工程建设. 2020(S1): 266-272 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.4 %FULLTEXT: 21.4 %META: 75.4 %META: 75.4 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %其他: 1.1 %其他: 1.1 %Canada: 0.2 %Canada: 0.2 %China: 0.1 %China: 0.1 %Malvern: 0.3 %Malvern: 0.3 %Qatar: 0.3 %Qatar: 0.3 %Russian Federation: 0.4 %Russian Federation: 0.4 %[]: 0.3 %[]: 0.3 %上海: 33.7 %上海: 33.7 %北京: 5.4 %北京: 5.4 %南宁: 0.8 %南宁: 0.8 %台州: 0.3 %台州: 0.3 %咸阳: 0.1 %咸阳: 0.1 %哈密: 0.2 %哈密: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %大同: 0.1 %大同: 0.1 %天津: 0.2 %天津: 0.2 %宣城: 0.2 %宣城: 0.2 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %张家口: 4.1 %张家口: 4.1 %成都: 0.2 %成都: 0.2 %晋城: 0.2 %晋城: 0.2 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.1 %沈阳: 0.1 %海口: 0.3 %海口: 0.3 %深圳: 0.1 %深圳: 0.1 %百色: 0.1 %百色: 0.1 %盘锦: 0.1 %盘锦: 0.1 %石家庄: 0.1 %石家庄: 0.1 %芒廷维尤: 21.3 %芒廷维尤: 21.3 %西宁: 12.9 %西宁: 12.9 %西安: 0.1 %西安: 0.1 %许昌: 0.1 %许昌: 0.1 %贵阳: 0.8 %贵阳: 0.8 %运城: 0.9 %运城: 0.9 %连云港: 0.3 %连云港: 0.3 %遂宁: 0.1 %遂宁: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %长治: 0.1 %长治: 0.1 %驻马店: 8.5 %驻马店: 8.5 %其他其他CanadaChinaMalvernQatarRussian Federation[]上海北京南宁台州咸阳哈密哥伦布大同天津宣城库比蒂诺张家口成都晋城武汉沈阳海口深圳百色盘锦石家庄芒廷维尤西宁西安许昌贵阳运城连云港遂宁邯郸郑州重庆长治驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (759) PDF downloads(336) Cited by(14)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return