Citation: | WANG Xiying.Study on corrosion rate of cement monomineralic C2S in CO2 geological sequestration environment[J]. Drilling Fluid & Completion Fluid,2024, 41(5):646-653 doi: 10.12358/j.issn.1001-5620.2024.05.012 |
[1] |
EVERS J. A roadmap to net zero: The International Energy Agency has presented a roadmap for the global energy sector to reach net-zero CO2 emissions by 2050. What contribution could nuclear make?[J]. Nuclear Engineering International, 2021, 66(803):216-217.
|
[2] |
刘琦, 赵莉, 马忠诚, 等. 用于CCUS地质封存的CO2响应型智能凝胶封窜体系[J]. 油田化学,2022,39(4):623-629.
LIU Qi, ZHAO Li, MA Zhongcheng, et al. CO2 responsive smart gel sealants for CCUS geological storage[J]. Oilfield Chemistry, 2022, 39(4):623-629.
|
[3] |
ZHANG J, WANG C N, PENG Z G, et al. Corrosion integrity of oil cement modified by environment responsive microspheres for CO2 geologic sequestration wells[J]. Cement and Concrete Research, 2021, 143:106397. doi: 10.1016/j.cemconres.2021.106397
|
[4] |
龚鹏, 程小伟, 武治强, 等. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报,2023,37(7):67-73.
GONG Peng, CHENG Xiaowei, WU Zhiqiang, et al. Research on the effect of Calcium carbonate whiskers on the self-healing of cement stone cracks induced by CO2[J]. Materials Reports, 2023, 37(7):67-73.
|
[5] |
饶志华, 邓成辉, 马倩芸, 等. CCUS 井工况下不同引晶材料对水泥石裂缝自愈合过程的影响[J]. 钻井液与完井液,2023,40(4):495-501.
RAO Zhihua, DENG Chenghui, MA Qianyun, et al. Comparative study on effects of different crystallographic materials on selfhealing of fractures in set cement under CCUS well work conditions[J]. Drilling Fluid & amp; Completion Fluid, 2023, 40(4):495-501.
|
[6] |
武治强, 武广瑷, 幸雪松. CO2 腐蚀-应力耦合下固井水泥环密封完整性[J]. 钻井液与完井液,2024,41(2):220-230. doi: 10.12358/j.issn.1001-5620.2024.02.012
WU Zhiqiang, WU Guang’ai, XING Xuesong. Sealing integrity of cement sheath under the condition of CO2 corrosion-stress coupling[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):220-230. doi: 10.12358/j.issn.1001-5620.2024.02.012
|
[7] |
张景富, 俞庆森, 徐明, 等. G级油井水泥的水化及硬化[J]. 硅酸盐学报,2002,30(2):167-171,177. doi: 10.3321/j.issn:0454-5648.2002.02.006
ZHANG Jingfu, YU Qingsen, XU Ming, et al. Hydration and hardening of class G oilwell cemnet[J]. Journal of the Chinese Ceramic Society, 2002, 30(2):167-171,177. doi: 10.3321/j.issn:0454-5648.2002.02.006
|
[8] |
刘思楠, 张力为, 甘满光, 等. 地质封存环境CO2压力影响水泥碳化程度的试验研究[J]. 中国电机工程学报,2022,42(9):3126-3134.
LIU Sinan, ZHANG Liwei, GAN Manguang, et al. Experimental study of the effect of CO2 pressure on the degree of cement carbonation under geologic CO2 storage environment[J]. Proceedings of the CSEE, 2022, 42(9):3126-3134.
|
[9] |
袁彬, 袁坤峰, 徐璧华, 等. 基于固体钙含量的CO2 腐蚀水泥石规律预测[J]. 西南石油大学学报(自然科学版),2021,43(4):191-198.
YUAN Bin, YUAN Kunfeng, XU Bihua, et al. Prediction of CO2 corrosion pattern of cement stone based on solid Calcium content[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(4):191-198.
|
[10] |
熊钰丹, 席方柱. CO2对油井水泥腐蚀的研究进展[J]. 钻井液与完井液,2011,28(z1):69-71.
XIONG Yudan, XI Fangzhu. Research progress of CO2 corrosion on oil well cement[J]. Drilling Fluid & Completion Fluid, 2011, 28(z1):69-71.
|
[11] |
冯福平, 刘子玉, 路大凯, 等. CO2对水泥石腐蚀机理及密封性的影响研究进展[J]. 硅酸盐学报,2018,46(2):247-255.
FENG Fuping, LIU Ziyu, LU Dakai, et al. Review on CO2 effect on cement corrosion mechanism and cement sealing performance[J]. Journal of the Chinese Ceramic Society, 2018, 46(2):247-255.
|
[12] |
彭志刚, 张健, 冯茜, 等. 环境响应型聚合物对水泥石抗CO2腐蚀性能的影响[J]. 石油学报,2018,39(6):703-711.
PENG Zhigang, ZHANG Jian, FENG Qian, et al. Effects of environmental responsive polymer on the anti-CO2 corrosion performance of set cement[J]. Acta Petrolei Sinica, 2018, 39(6):703-711.
|
[13] |
WANG D, FANG Y F, ZHANG Y Y. Changes in mineral composition, growth of calcite crystal, and promotion of physico-chemical properties induced by carbonation of β-C2S[J]. Journal of CO2 Utilization, 2019, 34:149-162. doi: 10.1016/j.jcou.2019.06.005
|
[14] |
ASHRAF W, OLEK J. Carbonation behavior of hydraulic and non-hydraulic Calcium silicates: potential of utilizing low-lime Calcium silicates in cement-based materials[J]. Journal of Materials Science, 2016, 51(13):6173-6191. doi: 10.1007/s10853-016-9909-4
|
[15] |
IBÁÑEZ J, ARTÚS L, CUSCÓ R, et al. Hydration and carbonation of monoclinic C2S and C3S studied by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2007, 38(1):61-67. doi: 10.1002/jrs.1599
|
[16] |
PHUNG Q T, MAES N, JACQUES D, et al. Modelling the carbonation of cement pastes under a CO2 pressure gradient considering both diffusive and convective transport[J]. Construction and Building Materials, 2016, 114:333-351. doi: 10.1016/j.conbuildmat.2016.03.191
|
[17] |
高强, 梅开元, 王德坤, 等. CCUS环境下水泥单矿C3S的CO2腐蚀动力学研究[J]. 硅酸盐通报,2022,41(8):2644-2653. doi: 10.3969/j.issn.1001-1625.2022.8.gsytb202208006
GAO Qiang, MEI Kaiyuan, WANG Dekun, et al. CO2 corrosion kinetics of C3S in cement single ore under CCUS environment[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8):2644-2653. doi: 10.3969/j.issn.1001-1625.2022.8.gsytb202208006
|
[18] |
刘新, 冯攀, 沈叙言, 等. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报,2021,35(9):9157-9167.
LIU Xin, FENG Pan, SHEN Xuyan, et al. Advances in the understanding of cement hydrate — Calcium silicate hydrate ( C-S-H)[J]. Materials Review, 2021, 35(9):9157-9167.
|
[19] |
王佳, 张春梅, 张晔, 等. 表面接枝 C—S—H 的岩沥青对高温油井水泥石力学性能的影响[J]. 钻井液与完井液,2023,40(6):806-814.
WANG Jia, ZHANG Chunmei, ZHANG Ye, et al. Effects of rock asphalt with surface grafted C—S—H on mechanical properties of set cement in high temperature wells[J]. Drilling Fluid & amp; Completion Fluid, 2023, 40(6):806-814.
|
[20] |
蒙绍强. 纳米材料对水泥水化影响机理的研究[D]. 广州: 广州大学, 2022.
MENG Shaoqiang. Study on the effect of nanomaterials on cement hydration[D]. Guangzhou: Guangzhou University, 2022.
|
[21] |
倪修成, 程小伟, 黎俊吾, 等. 新型油井水泥物相组成调控及力学性能研究[J]. 硅酸盐通报,2021,40(8):2534-2545.
NI Xiucheng, CHENG Xiaowei, LI Junwu, et al. Phase composition control and mechanical property of new oil well cement[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8):2534-2545.
|