Citation: | CAI Aiting, SU Junlin, DAI Kun, et al.Lost circulation prediction based on long short-term memory network and random forest algorithm[J]. Drilling Fluid & Completion Fluid,2025, 42(6):1-9 |
[1] |
李根生, 宋先知, 祝兆鹏, 等. 智能钻完井技术研究进展与前景展望[J]. 石油钻探技术, 2023, 51(4): 35-47. doi: 10.11911/syztjs.2023040
LI Gensheng, SONG Xianzhi, ZHU Zhaopeng, et al. Research progress and the prospect of intelligent drilling and completion technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 35-47. doi: 10.11911/syztjs.2023040
|
[2] |
陈林, 陆海瑛, 王泽华, 等. 融合LightGBM和SHAP的井漏类型判断及主控因素分析[J]. 钻井液与完井液, 2023, 40(6): 771-777. doi: 10.12358/j.issn.1001-5620.2023.06.011
CHEN Lin, LU Haiying, WANG Zehua, et al. Identifying types and analyzing main controlling factors of mud losses using a method integrating LightGBM algorithm and SHAP[J]. Drilling Fluid & Completion Fluid, 2023, 40(6): 771-777. doi: 10.12358/j.issn.1001-5620.2023.06.011
|
[3] |
孙伟峰, 卜赛赛, 张德志, 等. 基于DCC—LSTM的钻井液微量漏失智能监测方法[J]. 天然气工业, 2023, 43(9): 141-148. doi: 10.3787/j.issn.1000-0976.2023.09.014
SUN Weifeng, BU Saisai, ZHANG Dezhi, et al. DCC-LSTM based intelligent minor lost circulation monitoring method[J]. Natural Gas Industry, 2023, 43(9): 141-148. doi: 10.3787/j.issn.1000-0976.2023.09.014
|
[4] |
孙金声, 刘凡, 程荣超, 等. 机器学习在防漏堵漏中研究进展与展望[J]. 石油学报, 2022, 43(1): 91-100. doi: 10.7623/syxb202201008
SUN Jinsheng, LIU Fan, CHENG Rongchao, et al. Research progress and prospects of machine learning in lost circulation control[J]. Acta Petrolei Sinica, 2022, 43(1): 91-100. doi: 10.7623/syxb202201008
|
[5] |
HOU X X, YANG J, YIN Q S, et al. Lost circulation prediction in South China sea using machine learning and big data technology[C]//Offshore Technology Conference. Houston, Texas, USA, 2020: OTC-30653-MS.
|
[6] |
万康, 马志超, 郭青松, 等. 人工智能技术在石油钻井工程事故预警中的应用[J]. 录井工程, 2022, 33(2): 24-29. doi: 10.3969/j.issn.1672-9803.2022.02.005
WAN Kang, MA Zhichao, GUO Qingsong, et al. Application of artificial intelligence on petroleum drilling engineering accident early warning[J]. Mud Logging Engineering, 2022, 33(2): 24-29. doi: 10.3969/j.issn.1672-9803.2022.02.005
|
[7] |
PANG H W, MENG H, WANG H Q, et al. Lost circulation prediction based on machine learning[J]. Journal of Petroleum Science and Engineering, 2022, 208, Part A: 109364.
|
[8] |
罗鸣, 李盛阳, 彭巍, 等. 基于深度卷积特征重构的井漏事故预测[J]. 计算机仿真, 2023, 40(7): 82-88. doi: 10.3969/j.issn.1006-9348.2023.07.015
LUO Ming, LI Shengyang, PENG Wei, et al. Lost circulation accident forewarning based on deep convolutional feature reconstruction network[J]. Computer Simulation, 2023, 40(7): 82-88. doi: 10.3969/j.issn.1006-9348.2023.07.015
|
[9] |
孙伟峰, 刘凯, 张德志, 等. 结合钻井工况与Bi-GRU的溢流与井漏监测方法[J]. 石油钻探技术, 2023, 51(3): 37-44. doi: 10.11911/syztjs.2023043
SUN Weifeng, LIU Kai, ZHANG Dezhi, et al. A kick and lost circulation monitoring method combining Bi-GRU and drilling conditions[J]. Petroleum Drilling Techniques, 2023, 51(3): 37-44. doi: 10.11911/syztjs.2023043
|
[10] |
SHERSTINSKY A. Fundamentals of recurrent neural network (RNN) and long Short-Term memory (LSTM) network[J]. Physica D. Nonlinear Phenomena, 2020, 404: 132306. doi: 10.1016/j.physd.2019.132306
|
[11] |
HOCHREITER S, SCHMIDHUBER J. Long Short-Term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|
[12] |
杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2): 1-6,26.
YANG Li, WU Yuqian, WANG Junli, et al. Research on recurrent neural network[J]. Journal of Computer Applications, 2018, 38(S2): 1-6,26.
|
[13] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
|
[14] |
ABBAS A K, BASHIKH A A, ABBAS H, et al. Intelligent decisions to stop or mitigate lost circulation based on machine learning[J]. Energy, 2019, 183: 1104-1113. doi: 10.1016/j.energy.2019.07.020
|