Volume 37 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
DING Jiadi, SHEN Jiyun, ZHANG Shuo, JI Hongfei, WANG Linlin. A Failure Criterion of Oil Well Set Cement Based on Porous Media Theory[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(6): 763-770. doi: 10.3969/j.issn.1001-5620.2020.06.015
Citation: DING Jiadi, SHEN Jiyun, ZHANG Shuo, JI Hongfei, WANG Linlin. A Failure Criterion of Oil Well Set Cement Based on Porous Media Theory[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(6): 763-770. doi: 10.3969/j.issn.1001-5620.2020.06.015

A Failure Criterion of Oil Well Set Cement Based on Porous Media Theory

doi: 10.3969/j.issn.1001-5620.2020.06.015
  • Received Date: 2020-09-15
  • Publish Date: 2020-12-28
  • Set cement is a porous medium comprising cement skeleton and pores. When becoming solidified after hydration, the set cement in a well still has free water in its pores, and the free water is connected with fluid in the formations. Hence, the mechanical behavior of a set cement is influenced by the pore pressure of the formation and the external loads. To further reveal the mechanical performance of set cement in actual working conditions, triaxial mechanical experiment was conducted on set cement based on the guidance of the theory of porous media mechanics. Data obtained from the experiments were used to determine the Mohr-Coulomb failure criteria taking into account the pore water pressure. The experiments were conducted on Jiahua oil well cement. By changing the confining pressure, water drain conditions and pore water pressure, various mechanical parameters of the set cement were obtained. It was found from the experimental results that the pore water pressure is an important factor affecting the failure strength of the set cement. The Mohr-Coulomb criteria model not taking into account the porous media mechanics of the set cement are non-linear, while the Mohr-Coulomb envelope taking into account the porous media mechanics of the set cement are linear, from which the criterion formulae were calculated.

     

  • loading
  • [1]
    齐奉忠, 刘硕琼, 杨成颉, 等. BP墨西哥湾井喷漏油事件给深井固井作业的启示[J]. 石油科技论坛, 2011, 30(5):45-48.

    QI Fengzhong, LIU Shuoqiong, YANG Chengjie, et al. Enlightenment to deep well cementing gained from BP Mexico gulf blowout[J]. Oil Forum, 2011, 30(5):45-48.
    [2]
    汪杰, 周福建, 王云, 等. 致密油藏超长水平井固井水泥石力学性能评价[J]. 石油钻采工艺, 2018, 40(4):448-452.

    WANG jie, ZHOU Fujian, WANG Yun, et al. Mechanical performance evaluation of cementing stone in ultra-long horizontal well cementing in tight reservoir[J]. Oil Drilling & Production Technology, 2018, 40(4):448-452.
    [3]
    刘奎, 高德利, 曾静, 等. 温度与压力作用下页岩气井环空带压力学分析[J]. 石油钻探技术, 2017, 45(3):8-14.

    LIU Kui, GAO Deli, ZENG Jing, et al. Pressure analysis of annulus belt of shale gas well under temperature and pressure[J]. Petroleum Drilling Techniques, 2017, 45(3):8-14.
    [4]
    艾正青, 张峰, 丁辉, 等. 温度对水泥石机械性能非线性影响规律及原因分析[J]. 钻井液与完井液, 2018, 35(4):77-81.

    AI Zhengqing, ZHANG Feng, DING Hui, et al.Effects of temperature on mechanical property of set cement and analysis thereof[J].Drilling Fluid & Completion Fluid, 2018, 35(4):77-81.
    [5]
    WANG LL, ZHANG GQ, HALLAIS S, et al. Swelling of shales:a multiscale experimental investigation[J]. Energy & Fuel, 2017, 31(10):42-51.
    [6]
    WANG LL, BORNERT M, HÉRIPRÉ E, et al. Microscale insight into the influence of humidity on the mechanical behavior of mudstones[J]. Journal of Geophysical Research-Solid Earth, 2015, 120(15):73-86.
    [7]
    GAO Y, LIU Z, ZHUANG Z, et al. Cylindrical borehole failure in a poroelastic medium[J]. Journal of Applied Mechanics, 2016, 83(6):061005.
    [8]
    WANG LL, BORNERT M, HÉRIPRÉ E, et al. The mechanisms of deformation and damage of mudstones:a micro-scale study combining ESEM and DIC[J]. Rock Mechanics and Rock Engineering, 2015, 48(5):1913-1926.
    [9]
    HUITING LIU, YONGJIN YU, HUIMIN LIU, et al. Hybrid effects of nano-silica and graphene oxide on mechanical properties and hydration products of oil well cement[J]. Construction and Building Materials, 2018, 191.
    [10]
    TERZAGHI K. Die berechnung der durchassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungs erscheinungen[J]. Sitzungsber Akad Wiss Math Naturwiss Kl Abt, 1923, 132:105-124.
    [11]
    RENDULIC L. Porenziffer und porenwasserdrunk in Tonen[J]. Der Bauingenieur, 1936, 17:559-564.
    [12]
    BIOT, MAURICE A. General theory of threedimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2):155.
    [13]
    DETOURNAY E, CHENG H D. Poroelastic response of a borehole in a non-hydrostatic stress field[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1988, 25(3):171-182.
    [14]
    Zimmerman R W. Compressibility of sandstones[M]. Elsevier, 1990.
    [15]
    BERRYMAN J G. Effective stress for transport properties of inhomogeneous porous rock[J]. Journal of Geophysical Research, 1992, 97:17409-17424.
    [16]
    DETOURNAY E, CHENG A H D. Fundamentals of poroelasticity[M]. Analysis and design methods. Pergamon, 1993:113-171.
    [17]
    SULEM J, VARDOULAKIS I G. Bifurcation analysis in geomechanics[M]. CRC Press, 1995.
    [18]
    OLIVIER COUSSY. Poromechanics[M]. Poromechanics. 2004.
    [19]
    OLIVIER COUSSY. Mechanics and physics of porous solids[M]. 2010.
    [20]
    QIANG ZENG, KEFEI LI, TEDDY FEN-CHONG, et al. Pore structure characterization of cement pastes blended with high-volume fly-ash[J]. Cement and Concrete Research, 2011, 42(1):194-204.
    [21]
    GHABEZLOO S, SULEM J, SYLVINE GUÉDON, et al. Poromechanical behaviour of hardened cement paste under isotropic loading[J]. Cement & Concrete Research, 2008, 38(12):1424-1437.
    [22]
    GHABEZLOO S. Association of macroscopic laboratory testing and micromechanics modelling for the evaluation of the poroelastic parameters of a hardened cement paste[J]. Cement & Concrete Research, 2010, 40(8):1197-1210.
    [23]
    VU M H, SULEM J, GHABEZLOO S, et al. Timedependent behaviour of hardened cement paste under isotropic loading[J]. Cement & Concrete Research, 2012, 42(6):789-797.
    [24]
    常培敏, 刘健, 李早元, 等. 油井水泥石三轴力学行为数学分析模型[J]. 硅酸盐通报, 2015, 34(2):409-414.

    CHANG Peimin, LIU Jian, LI Zaoyuan, et al. Mathematical analysis model of the oil well cement-stone triaxial mechanical behavior[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(2):409-414.
    [25]
    李勇, 纪宏飞, 白新平, 等. 固井水泥石三轴力学试验的试样制备方法[J]. 石油钻采工艺, 2020, 42(3):309-313.

    LI Yong, JI Hongfei, BAI Xinping, et al. Sample preparation methods for triaxial mechanical test of cementing set cement[J]. Oil Drilling & Production Technology, 2020, 42(3):309-313.
    [26]
    张林, 陈存礼, 张登飞, 等. 饱和重塑黄土在部分排水条件下的力学特性研究[J].水力发电学报, 2019, 112-120. ZHANG Lin, CHEN Cunli, ZHANG Dengfei, et al. Study on mechanical properties of saturated remolded loess under partial drainage condition[J].Journal of Hydroelectric Engineering, 2019, 112

    -120.
    [27]
    洪隽天, 徐明. 不排水条件下可燃冰分解对海底边坡稳定性的影响[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(S1):49-55. HONG Juantian, XU Ming. Influence of combustible ice decomposition on stability of seabed slope under undrained conditions[J]. Journal of Tianjin University (Science and Technology), 2019, 52(S1):49-55.
    [28]
    陈勉, 金衍, 张广清, 等. 石油工程岩石力学[M]. 科学出版社, 2008. CHEN Mian, JIN Yan, ZHANG Guangqing, et al. Rock mechanics of petroleum engineering[M].Science Press, 2008.
    [29]
    吴强, 吴章利. 摩尔库伦本构模型参数敏感性分析及修正[J]. 陕西水利, 2012(2):148-149. WU Qiang, WU Zhangli. Sensitivity analysis and correction of morh coulomb constitutive model parameters[J]. Shaanxi Water Resources, 2012

    (2):148-149.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (578) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return