Volume 37 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
WANG Yanling, JIANG Baoyang, LAN Jincheng, MENG Lingtao, XU Ning, LI Qiang. The Properties of an Environmentally Friendly High Temperature Salt Resistant Micrometer and Nanometer Filter Loss Reducer[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(6): 737-741. doi: 10.3969/j.issn.1001-5620.2020.06.010
Citation: WANG Yanling, JIANG Baoyang, LAN Jincheng, MENG Lingtao, XU Ning, LI Qiang. The Properties of an Environmentally Friendly High Temperature Salt Resistant Micrometer and Nanometer Filter Loss Reducer[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(6): 737-741. doi: 10.3969/j.issn.1001-5620.2020.06.010

The Properties of an Environmentally Friendly High Temperature Salt Resistant Micrometer and Nanometer Filter Loss Reducer

doi: 10.3969/j.issn.1001-5620.2020.06.010
  • Received Date: 2020-09-01
  • Publish Date: 2020-12-28
  • Presently there are fewer environmentally friendly high temperature salt resistant filter loss reducers available in China, and the molecular structure of the filter loss reducers are also quite simple. In our studies, MND-1, a new environmentally friendly high temperature salt-resistant micrometer and nanometer filter loss reducer, was developed by the modification of hydroxyl ethyl cellulose (HEC), with 1-bromododecane as the initiator for the reaction. Graft copolymerization of HEC and nanometer CaCO3 produced a product of macro molecules. Association among the macro molecules or among the different molecular chains of a single macro molecule produced supramolecular network structure of different morphologies. The interaction between the graft copolymer and the nanometer CaCO3 helped stabilize the molecular structure of the final product and also enhanced the relevant properties of the final product. The filter loss reducer developed has small molecular volume and high specific area. The molecules of MND-1 can form a spatial network structure through hydrogen bonds and Van der Waal’s force among the hydroxyl groups in the molecules. The strength of this spatial network is not strong enough to resist high shear rates, and the viscosity of the MND-1 solution is thus decreased at high shear rates. When shearing stops, MND-1 regains its spatial network structure formed through the association forces among the molecules of MND-1, and the MND-1 solution resumes its viscosity. This is the so-called shear thinning effect formed through a dynamic equilibrium between the destruction and recovery of the spatial network structure. With this excellent shear thinning effect, MND-1 can effectively seal the voids in mud cakes, thereby reducing the rate of filtration. Laboratory evaluation experiment showed that MND-1 has excellent filtration control capacity in freshwater, saltwater and saturated saltwater drilling fluids. The API filter loss of an MND-1 treated saturated saltwater base drilling fluid aged at 180 ℃ for 16 h was only 6.8 mL. MND-1 is environmentally friendly and easy to biodegrade, it has an EC50 of 4.3×104 mg/L.MND-1 can be used in drilling high temperature salt formations in environmentally sensitive areas.

     

  • loading
  • [1]
    李财富, 李本高, 汪燮卿. 国内水基钻井液降滤失剂研究现状[J]. 中外能源, 2013, 18(2):39-44.

    LI Caifu, LI Bengao, WANG Xieqing.Research status of domestic water-based drilling fluid fluid loss additives[J].Sino-Foreign Energy, 2013, 18(2):39-44.
    [2]
    吕爱敏, 朱轶飞, 高贵军, 等. 新型抗高温抗盐钻井液降滤失剂的研究现状[J]. 河北化工, 2007(4):14-15. LYU Aimin, ZHU Yifei, GAO Guijun, et al.Research status of new anti-high temperature and anti-salt drilling fluid fluid loss agent[J].Hebei Chemical Industry, 2007

    (4):14-15.
    [3]
    李靖. 环保型水基钻井液用抗温耐盐降滤失剂研究[D]. 北京:中国石油大学(北京), 2016. LI Jing.Research on temperature-and salt-resistant fluid loss reducer for environmentally friendly water-based drilling fluids[D].Beijing:China University of Petroleum (Beijing), 2016.
    [4]
    刘均一. 高性能环保水基钻井液技术研究新进展[J]. 精细石油化工进展, 2018, 19(6):29-34.

    LIU Junyi.New progress in research on high-performance environmentally friendly water-based drilling fluid technology[J].Progress in Fine Petrochemicals, 2018, 19(6):29-34.
    [5]
    赵小平, 孙强. 环境友好型水基钻井液技术研究新进展[J]. 山东化工, 2018, 47(20):52-53.

    ZHAO Xiaoping, SUN Qiang. New progress in environmentally friendly water-based drilling fluid technology research[J].Shandong Chemical Industry, 2018, 47(20):52-53.
    [6]
    艾万铸. 海洋石油开发的成就及展望[J]. 海洋通报, 1982(2):71-80. AI Wanzhu.Achievements and prospects of offshore oil development[J].Marine Bulletin, 1982

    (2):71-80.
    [7]
    鲁亢, 杨尚源, 梁志伟, 等. 有机物生物降解性评价方法综述[J]. 应用生态学报, 2013, 24(2):597-606.

    LU Kang, YANG Shangyuan, LIANG Zhiwei, et al. A review of evaluation methods for biodegradability of organic matter[J].Journal of Applied Ecology, 2013, 24(2):597-606.
    [8]
    李沁. 疏水缔合羟乙基纤维素及其超分子聚集体结构研究[D]. 成都:四川大学, 2004. LI Qin.Study on the structure of hydrophobically associating hydroxyethyl cellulose and its supramolecular aggregates[D].Chengdu:Sichuan University, 2004.
    [9]
    张道明. 纳米纤维素的研制及其在钻井液中的应用研究[D]. 中国石油大学(华东), 2017. ZHANG Daoming.Research on the development of nanocellulose and its application in drilling fluids[D].China University of Petroleum(East China), 2017.
    [10]
    晏军, 于长海, 梁冲, 等. 纳米石蜡乳液封堵材料的合成与性能评价[J]. 钻井液与完井液, 2018, 35(2):73-77.

    YAN Jun, YU Changhai, LIANG Chong, et al. Synthesis and evaluation of a nanophase wax emulsion plugging material[J].Drilling Fluid & Completion Fluid, 2018, 35(2):73-77.
    [11]
    蓝强, 李公让, 张敬辉, 等. 石蜡纳米乳液的性能影响因素及低能乳化法制备[J]. 石油钻探技术, 2012, 40(1):58-63.

    LAN Qiang, LI Gongrang, ZHANG Jinghui, et al. Preparation of prarffin nano-emulsion with low-energy emulsification[J].Petroleum Drilling Techniques, 2012, 40(1):58-63.
    [12]
    李超, 王辉, 刘潇冰, 等. 纳米乳液与微乳液在油气生产中的应用进展[J].钻井液与完井液, 2014, 31(2):79-84.

    LI Chao, WANG Hui, LIU Xiaobing, et al.Progress of application of nano emulsion and micro emulsion in oil and gas production[J].Drilling Fluid & Completion Fluid, 2014, 31(2):79-84.
    [13]
    朱仪玫, 方波, 卢拥军, 等. 环氧氯丙烷改性纤维素溶液的流变与减阻性能[J]. 钻井液与完井液, 2016, 33(6):95-100.

    ZHU Yimei, FANG Bo, LU Yongjun, et al.Study on the rheology and drag reducing performance of epoxy chloropropane modifed cellulose solution[J].Drilling Fluid & Completion Fluid, 2016, 33(6):95-100.
    [14]
    王丽伟, 卢拥军, 刘玉婷, 等. 羟乙基羧甲基纤维素与金属离子交联作用机理[J]. 科学技术与工程, 2015, 15(33):166-169.

    WANG Liwei, LU Yongjun, LIU Yuling, et al. Crosslinking mechanism of hydroxyethyl carboxymethyl cellulose and metal lons[J].Science Technology and Engineering, 2015, 15(33):166-169.
    [15]
    褚奇, 罗平亚, 苏俊霖, 等. 抗高温环保型有机硅钻井液的研究[J]. 石油化工, 2012, 41(4):454-460.

    CHU Qi, LUO Pingya, SU Junlin, et al.Research on high temperature resistant and environmentally friendly organosilicon drilling fluid[J].Petrochemical Industry, 2012, 41(4):454-460.
    [16]
    张春光, 孙明波, 侯万国, 等. 降滤失剂作用机理研究-对不同类型降滤失剂的分析[J]. 钻井液与完井液, 1996, 13(3):12-18.

    ZHANG Chunguang,SUN Mingbo, HOU Wanguo,et al. Study on the mechanism of fluid loss agent-analysis of different types of fluid loss additives[J].Drilling Fluid & Completion Fluid, 1996, 13(3):12-18.
    [17]
    周治平, 谢炳光. 纳米材料在钻井液中的应用[J]. 安全与环境工程, 2012, 19(6):144-147.

    ZHOU Zhiping, XIE Bingguang.The application of nanomaterials in drilling fluid[J].Safety and Environmental Engineering, 2012, 19(6):144-147.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (717) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return