Volume 37 Issue 5
Oct.  2020
Turn off MathJax
Article Contents
LUO Mingwang, ZHANG Xianbin, WANG Zhongqiu, WANG Yamei, LOU Yishan, XIE Binqiang. Preparation and Working Mechanisms of an Ultra-high Temperature Low Viscosity Polymer Filtrate Reducer[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(5): 585-592. doi: 10.3969/j.issn.1001-5620.2020.05.008
Citation: LUO Mingwang, ZHANG Xianbin, WANG Zhongqiu, WANG Yamei, LOU Yishan, XIE Binqiang. Preparation and Working Mechanisms of an Ultra-high Temperature Low Viscosity Polymer Filtrate Reducer[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(5): 585-592. doi: 10.3969/j.issn.1001-5620.2020.05.008

Preparation and Working Mechanisms of an Ultra-high Temperature Low Viscosity Polymer Filtrate Reducer

doi: 10.3969/j.issn.1001-5620.2020.05.008
  • Received Date: 2020-05-13
  • Publish Date: 2020-10-28
  • A low molecular weight polymer filtrate reducer PANAD was developed to overcome the disadvantages of conventional filtrate reducers use in deep and ultra-deep well drilling, such as poor stability at high temperatures, poor resistance to salt contamination and excessive impact on the rheology of drilling fluids. The PANAD was synthesized through chain transfer reaction with several monomers such as 2-acrylamide-2-methylpropanesulfonic acid (AMPS), N, N-dimethyl acrylamide (DMAM), N-vinyl pyrrolidone (NVP) and dimethyl diallyl ammonium chloride (DMDAAC). 2,2-azobis,2-methylpropylimid, dihydrochloride was used as chain initiator. PANAD functions normally at elevated temperatures,up to 230℃, and high salinity,up to 20% salt concentration). The optimum synthesis conditions determined by orthogonal experiment are as follows, molar ratio of DMAM:AMPS:DMDAAC:NVP=7:2:2.5:1, reaction temperature=65℃ and concentration of initiator=0.7%. The intrinsic viscosity of PANAD 58 mL/g, as determined by "one-point method". The molecular structure and thermal stability of PANAD, as characterized by FT-IR and thermalgravimetric analysis, showed that PANAD had excellent thermal stability, with its chain pyrolysis temperature of 314℃. Test of the filtration control performance of PANAD showed that PANAD worked normally in water base drilling fluids at a maximum temperature of 230℃. Aged fresh water base and 20% saltwater base drilling fluids treated with 1% PANAD had API filtration rate of 8.9 mL and 22.5 mL, respectively. Filtration rate of fresh water base drilling fluid at 180℃ was 35.6 mL, a better filtration control performance than Driscal D. PANAD has very weak effect on the rheology of the drilling fluid before and after aging at 230℃. The mechanisms of filtration control of PANAD was analyzed through zeta-potential measurement, adsorption test and SEM analysis.

     

  • loading
  • [1]
    王磊磊,王伟忠,张坤,等. 水基钻井液用抗高温降滤失剂的合成与性能评价[J]. 钻井液与完井液,2016, 33(2):22-25.

    WANG Leilei,WANG Weizhong,ZHANG Kun,et al. Synthesis and evaluation of high temperature water base drilling fluid filter loss reducer[J].Drilling Fluid & Completion Fluid, 2016,33(2):22-25.
    [2]
    SAFI B,ZAROURI S,CHABANE-CHAOUACHE R, et al.Physico-chemical and rheological characterization of water-based mud in the presence of polymers[J].Journal of Petroleum Exploration & Production Technology, 2016,6(2):185-190.
    [3]
    JHA PRAVEEN KUMAR, MAHTO VIKAS,SAXENA V K.Study the effects of xanthan gum and aluminium stearate on the properties of oil-in-water emulsion drilling fluids[J].Arabian Journal for Science & Engineering, 2016,41(1):143-153.
    [4]
    DIXON R A,YUN J,HUHMAN D,et al.Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering[J]. Plant Physiology,2013,161(3):1103-1116.
    [5]
    TRAVAS-SEJDIC J,EASTEAL A.Study of free-radical copolymerization of acrylamide with 2-acrylamido-2methyl-1-propane sulphonic acid[J].Journal of Applied Polymer Science,2000,75(5):619-628.
    [6]
    张瑞,霍锦华,彭志刚,等. 钻井液降滤失剂PAAS的制备及性能[J]. 精细化工,2017,34(5):569-575.

    ZHANG Rui,HUO Jinhua,PENG Zhigang,et al. Synthesis and performance research of filtrate reducer PAAS for drilling fluid[J]. Fine Chemicals,2017,34(5):569-575.
    [7]
    王岩,孙金声,黄贤斌,等. 抗高温耐盐钙五元共聚物降滤失剂的合成与性能[J]. 钻井液与完井液, 2018, 35(2):23-28.

    WANG Yan,SUN Jinsheng,HUANG Xianbin,et al. Synthesis and properties of a high temperature calcium and salt resistant quinary copolymer filter loss reducer[J]. Drilling Fluid &Completion Fluid,2018,35(2):23-28.
    [8]
    刘鹭,蒲晓林,戴毅,等. 低黏度效应聚合物降滤失剂的合成与性能评价[J]. 油田化学,2016,33(3):381-385.

    LIU Lu,PU Xiaolin,DAI Yi,et al.Synthesis and evaluation of low viscosity effect polymer filter loss reducer[J].Oilfield Chemistry, 2016,33(3):381-385.
    [9]
    白秋月.DMAA/AMPS/DMDAAC/NVP四元共聚耐温耐盐钻井液降滤失剂的研制[J]. 油田化学,2017,34(1):1-5.

    BAI Qiuyue.Preparation of DMAA/AMPS/DMDAAC/NVP quaternary copolymer anti-temperature and salt resistant filtrate reducer for drilling fluids[J].Oilfield Chemistry,2017,34(1):1-5.
    [10]
    KAMAL M R,KHOSHKAVA V.Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites[J].Carbohydrate Polymers,2015,123(5):105-114.
    [11]
    黄孟,许林,许洁,等. 水基恒流变钻井液流型调节剂的制备与性能评价[J]. 油田化学,2018,35(2):191-196.

    HUANG Meng,XU Lin,XU Jie,et al.Evaluation on preparation and performance of rheological modifier used in flat-rheology water-based drilling fluid[J].Oilfield Chemistry,2018,35(2):191-196.
    [12]
    李欣,谢彬强,赵林. 新型耐温抗盐聚合物增黏剂的制备及评价[J]. 石油化工,2018,47(6):595-599.

    LI Xin,XIE Binqiang,ZHAO Lin.Synthesis and evaluation of new heat-resistant and salt-tolerant polymer viscosifier[J].Petrochemical Technology,2018,47(6):595-599.
    [13]
    马喜平,周有祯,韩国彤,等. 一种钻井液降滤失剂的合成与室内评价[J]. 精细化工,2015,32(7):799-805.

    MA Xiping,ZHOU Youzhen,HAN Guotong,et al. Synthesis and indoor evaluation of a fluid loss additive with significant inhibition effect[J].Fine Chemicals, 2015,32(7):799-805.
    [14]
    黄维安,邱正松,曹杰,等. 钻井液用超高温抗盐聚合物降滤失剂的研制与评价[J]. 油田化学,2012,29(2):133-137.

    HUANG Weian,QIU Zhengsong,CAO Jie, et al. Development and evaluation of anti ultra-high temperature and salt tolerant polymeric filtrate loss reducer[J].Oilfield Chemistry,2012,29(2):133-137.
    [15]
    杨丽丽,杨潇,蒋官澄,等. 含离子液体链段抗高温高钙降滤失剂[J]. 钻井液与完井液,2018,35(6):8-14.

    YANG Lili, YANG Xiao, JIANG Guancheng,et al.A high temperature calcium resistant filter loss reducer containing ionic liquid segments[J].Drilling Fluid & Completion Fluid,2018,35(6):8-14.
    [16]
    全红平,吴洋,黄志宇,等. 抗高温耐盐型钻井液用降滤失剂的合成与性能评价[J]. 化工进展,2015,34(5):1427-1432.

    QUAN Hongping,WU Yang,HUANG Zhiyu,et al. Synthesis and performance evaluation of fluid loss additive for high temperature resistant and salt tolerant drilling fluid[J].Chemical Industry and Engineering Progress,2015,34(5):1427-1432.
    [17]
    马喜平,朱忠祥,侯代勇,等.抗高温钻井液降滤失剂的评价及其作用机理[J].石油化工,2016,45(4):453-460.

    MA Xiping,ZHU Zhongxiang,HOU Daiyong,et al. Evaluation and action mechanism of heat-resistant filtrate reducer-PAASD used in drilling fluids[J].Petrochemical Technology,2016,45(4):453-460.
    [18]
    甄剑武, 褚奇, 宋碧涛, 等. 抗高温降滤失剂的制备与性能研究[J]. 钻井液与完井液,2018, 35(6):15-21.

    ZHEN Jianwu,CHU Qi,SONG Bitao,et al. Preparation of and study on a high temperature filter loss reducer[J]. Drilling Fluid &Completion Fluid,2018, 35(6):15-21.
    [19]
    蒋官澄,李威,姚如钢,等. 耐温抗高钙盐降滤失剂的合成及其性能评价[J]. 石油化工,2014,42(4):419-424.

    JIANG Guancheng,LI Wei,YAO Rugang,et al. Synthesis and properties of heat-resistant filtrate reducer with high resistance to salt and calcium[J].Petrochemical Technology,2014,42(4):419-424.
    [20]
    蒋官澄,祁由荣,安玉秀,等. 抗高温超分子降滤失剂的合成及性能评价[J]. 钻井液与完井液, 2017,34(2):39-44.

    JIANG Guancheng,QI Yourong,AN Yuxiu,et al. Synthesis and evaluation of a high temperature AMPS/AM/NVP copolymer filter loss reducer[J]. Drilling Fluid &Completion Fluid,2017,34(2):39-44.
    [21]
    王中华,王旭. 超高温钻井液体系研究(Ⅲ)——抗盐高温高压降滤失剂研制[J]. 石油钻探技术,2009, 37(5):5-9.

    WANG Zhonghua,WANG Xu.Studies on ultra-high temperature drilling fluid system(Ⅲ) -development of the salt-resistant high temperature and high pressure fluid loss reagen[J].Petroleum Drilling Techniques, 2009, 37(5):5-9.
    [22]
    姚如钢, 蒋官澄, 李威, 等. 耐温抗盐降滤失剂P(AAAMPSAM)/nano-SiO2 的合成及性能[J]. 石油化工, 2013, 42(4):419-424.

    YAO Rugang,JIANG Guancheng,LI Wei,et al. Synthesis and properties of P(AA-AMPS-AM)/nano-SiO2 as fltrate reducer with heat resistance and salt tolerance[J]. Petrochemical Technology, 2013, 42(4):419-424.
    [23]
    吴鑫磊,闫丽丽,王立辉,等. 环保型钻井液用降滤失剂研究进展[J]. 钻井液与完井液,2018,35(3):8-16.

    WU Xinlei,YAN Lili,WANG Lihui,et al.Progress in thestudy of environmentally friendly drilling fluid filtration reducer[J].Drilling Fluid & Completion Fluid, 2018,35(3):8-16.
    [24]
    ABRAHAM E,NEVO Y,SLATTEGARD R,et al. Highly hydrophobic thermally stable liquid crystalline cellulosic nanomaterials[J].ACS Sustainable Chemistry & Engineering,2016,4(3):1338-1346.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1049) PDF downloads(132) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return