Volume 37 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
WAN Liping, JI Xiongxiong, LIU Zhendong, CHEN Yongbin, PAN Jiahao. Formulation of High Temperature Foaming Drilling Fluid and Performance Evaluation[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(1): 71-76. doi: 10.3969/j.issn.1001-5620.2020.01.011
Citation: WAN Liping, JI Xiongxiong, LIU Zhendong, CHEN Yongbin, PAN Jiahao. Formulation of High Temperature Foaming Drilling Fluid and Performance Evaluation[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(1): 71-76. doi: 10.3969/j.issn.1001-5620.2020.01.011

Formulation of High Temperature Foaming Drilling Fluid and Performance Evaluation

doi: 10.3969/j.issn.1001-5620.2020.01.011
  • Received Date: 2019-11-08
  • Publish Date: 2020-02-28
  • As well depth is becoming deeper, high temperature stability of foam mud becomes one of the restricting factors to foam drilling. Synergistic effect between different types of surfactants can be used to enhance the high temperature stability of foams. In our study six kinds of surfactants at the optimum concentration of 0.6% have been chosen to formulate a foam. Among these six surfactants, four of them have better foaming performance, and were evaluated for their ability to resist salt contamination and high temperature stability. The evaluation results showed that dodecyl dimethyl ammonium oxide (OA) had a stable foam comprehensive value at varied salt concentration, indicating that OA has good salt contamination resistance. At 100 ℃ or above, the α-sodium olefinsulfonate (AOS) had high foam comprehensive value, indicating that AOS has better high temperature stability. Study on the compounding of OA and AOS showed that the optimum ratio of the two was AOS:OA = 4:1. The optimum concentration of the compounded AOS and OA was 0.4%. Evaluation test on a BZY-1 surface tensiometer showed that the surface tension of the compounded surfactants is decreasing with temperature, indicating that when temperature is increasing, the foam fluid formulated with the compounded surfactants is becoming more and more stable. It was found in the evaluation test that the synergistic effect of the different surfactants reaches maximum at 150 ℃, and the foam comprehensive value at 100 ℃ reached 21.96×104 mL·s, indicating that the compounded surfactants have good high temperature stability.

     

  • loading
  • [1]
    李兆敏,李冉,史姜恒,等.泡沫在油气田开发中的应用及展望(Ⅰ)-起泡剂及泡沫流体在井筒中的应用[J].油田化学, 2012, 30(1):155-160.

    LI Zhaomin, LI Ran, SHI Jiangheng, et al.Bubble in the oil and gas field development and prospects of the application (Ⅰ)-Application of foaming agent and foam fluid in wellbore[J].Oil Field Chemical, 2012, 30(1):155-160.
    [2]
    程玉华,张鑫,石张泽,等.泡沫钻井液实验研究及现场应用[J].中国石油和化工标准与质量, 2014, 34(5):187-188.

    CHENG Yuhua, ZHANG Xin, SHI Zhangze, et al. Experimental research and field application of foam drilling fluid[J].China Petroleum and Chemical Standards&Quality, 2014, 34(5):187-188.
    [3]
    谢建宇,周亚贤,郝纪双,等.可循环使用的微泡钻井液:CN103320105A[P].2013-09-25. XIE Jianyu, Z HOU Yaxian, HAO Jiishang, et al.Recyclable micro-bubble drilling fluid:CN103320105A[P].2013-09-25.
    [4]
    马文英,周亚贤,苏雪霞,等.可循环微泡沫钻井液的性能评价与应用[J].中外能源, 2010, 25(7):57-59.

    MA Wenying, ZHOU Yaxian, SU Xuexia, et al. Performance evaluation and application of recyclable microfoam drilling fluid[J].Chinese and Foreign Energy, 2010, 25(7):57-59.
    [5]
    杨文权,张宇,程智,等.超高温钻井液在杨税务潜山深井中的应用[J].钻井液与完井液, 2019, 36(3):298-302

    , 307. YANG Wenquan, ZHANG Yu, CHENG Zhi, et al. Application of an ultra-high temperature drilling fluid in deep well drilling in Yangshuiwu buried hill[J]. Drilling Fluid&Completion Fluid, 2019, 36(3):298-302, 307.
    [6]
    赵洪凯,肖文淇.表面活性剂对泡沫稳定机理的研究进展[J].应用化工, 2019, 48(5):1167-1171.

    ZHAO Hongkai, XIAO Wenqi.Research progress of surfactant on foam stability mechanism[J].Applied Chemical Engineering, 2019, 48(5):1167-1171.
    [7]
    VARADE D, RODRIGUEZ-ABREU C, SHRESTHA L K, et al.Worm-like micelles in mixed surfactant systems:effect of cosol-vents[J].Journal of Physical Chemistry B, 2007, 111(35):10438-10447.
    [8]
    SHRESTHA R G, SAKAI K, SAKAI H, et al. Rheological proper-ties of poly oxyethylene cholesteryl ether wormlike micelles in aqueous system[J].Journal of Physical Chemistry B, 2011, 115(12):2937-2946.
    [9]
    SHRESTHA R G, ABEZGAUZ L, DANINO D, et al. Structure and dynamics of poly (oxyethylene) cholesteryl ether wormlike micelles:Rheometry, SAXS, and cryo-TEM studies[J].Langmuir, 2011, 27(21):12877-12883.
    [10]
    王凯,杨旭,涂莹红,等.一种驱油用高稳定性泡沫体系的制备与评价[J].应用化工, 2015, 44(7):1290-1292.

    WANG Kai, YANG Xu, TU Yinghong, et al. Preparation and evaluation of a high stability foam system for oil displacement[J].Applied Chemical Engineering, 2015, 44(7):1290-1292.
    [11]
    SY/T 5328-1985表面活性剂简化分类[S]. SY/T 5328-1985 Surfactants simplify class-ification[S].
    [12]
    CARACCIOLO A B, CARDONI M, PESCATORE T, et al.Characteristics and environmental fate of the anionic surfactant sodium lauryl ether sulphate (SLES) used as the main component in foaming agents for mechanized tunneling[J].Environmental Pollution, 2017, 226(1):94-103.
    [13]
    王楚强.阴离子表面活性剂检测分析[J].资源节约与环保, 2014, 30(5):122. WANG Chuqiang.Determination and analy-sis of anionic surfactant[J].Resources Conservation and Environmental Protection, 2014

    , 30(5):122.
    [14]
    WU G, YUAN C, JI X, et al.Effects of head type on the stability of gemini surfactant foam by molecular dynamics simulation[J].Chemical Physics Letters, 2017, 682(6):122-127.
    [15]
    胡应模,卞江,吴正明.阳离子表面活性剂对电气石表面改性效果的探讨[J].中国非金属矿工业导刊, 2014, 15(1):26-28.

    HU Yingmo, BIAN Jiang, WU Zhengming.Discussion on the surface modification effect of cationic surfactant on tourmaline[J].China Journal of Nonmetallic Mineral Industry, 2014, 15(1):26-28.
    [16]
    郑伟.我国浮选起泡剂的研究进展[J].有色金属:选矿部分, 2003, 18(1):37-40.

    ZHENG Wei.Research progress on flotation foaming agents in china[J].Nonferrous Metals:Mineral Processing, 2003, 18(1):37-40.
    [17]
    HEERSCHAP S, MARAFINO J N, MCKENNA K, et al. Foams stabilized by tricationic amphiphilic surfactants[J].Colloids Surfaces A Physicochemical Engineering Aspects, 2015, 487(9):190-197.
    [18]
    方云,夏咏梅.两性表面活性剂(Ⅰ)两性表面活性剂概述[J].日用化学工业, 2000, 30(3):53-55.

    FANG Yun, XIA Yongmei.Amphoteric surfactant (Ⅰ) summary of amphoteric surfactants[J].Journal of Daily Chemical Industry, 2000, 30(3):53-55.
    [19]
    吴玉娜,丁伟,江依昊.两性表面活性剂有效物含量的测定方法研究进展[J].化学工业与工程技术, 2014, 35(1):61-63.

    WU Yuna, DING Wei, JIANG Yihao.Research progress on determination methods of active substances of amphoterictant[J].Chemical Industry and Engineering Technology, 2014, 35(1):61-63.
    [20]
    ASKVIK K M, GUNDERSEN S A, SJOBLOM J. Complexation between lignosulfonates and cationic surfactants and its influence on emulsion and foam stability[J].Colloids and Surfaces A:Physicochem. Eng. Aspects, 1999, 159(1):88-89.
    [21]
    郭金爱,谢建宇,孙举,等.黏弹性表面活性剂的研制及其在微泡钻井液中的应用[J].钻井液与完井液, 2017, 34(5):1-7.

    GUO Jin'ai, XIE Jianyu, SUN Ju, et al. A viscoelastic surfactants:its development and application in micro foam drilling fluids[J]. Drilling Fluid&Completion Fluid, 2017, 34(5):1-7.
    [22]
    苏乐,郭磊,刘兆华.印尼KSO Benacat区块低密度微泡沫钻井液技术[J].石油钻探技术, 2016, 44(1):18-22.

    SU Le, GUO Lei, LIU Zhaohua.Low-density microfoam drilling fluid technology deployed in Benacat Block, Indonesia[J].Petroleum Drilling Techniques, 2016, 44(1):18-22.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (899) PDF downloads(237) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return