Volume 35 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
LIU Shuang, ZHANG Hong, QIU Xiaohui, FANG Bo, LU Yongjun, ZHAI Wen. Temperature Resistance and Shear Resistance of Xanthan Gum and Its Derivatives[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(1): 119-123. doi: 10.3969/j.issn.1001-5620.2018.01.023
Citation: LIU Shuang, ZHANG Hong, QIU Xiaohui, FANG Bo, LU Yongjun, ZHAI Wen. Temperature Resistance and Shear Resistance of Xanthan Gum and Its Derivatives[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(1): 119-123. doi: 10.3969/j.issn.1001-5620.2018.01.023

Temperature Resistance and Shear Resistance of Xanthan Gum and Its Derivatives

doi: 10.3969/j.issn.1001-5620.2018.01.023
  • Received Date: 2017-09-11
  • Publish Date: 2018-01-30
  • Temperature resistance and shear resistance are important parameters of fracturing fluid and the one the key factors to the success of fracturing job. To widen the application of non-crosslinking xanthan gum fracturing fluids and improve their job performance, study has been conducted on the effects of chemical modification and molecular conformation of xanthan gum (XG) on the high temperature resistance and shear resistance of XG solution. It was found that at low temperatures, chemical modification can remarkably enhance the temperature resistance and shear resistance of XG. At high temperatures, chemical modification plays almost no role in enhancing the temperature resistance and shear resistance of XG. Chemical modification improves the networking structure of XG molecules and the viscoelasticity of XG solution. Addition of salts (ions) into XG solution accelerates the formation of double helix conformation of XG molecules. The combined action of chemical modification and salts on XG remarkably improves the temperature resistance, shear resistance and suspending capacity at elevated temperatures. Comparison of rheology before and after shearing at 180℃ indicated that salts can enhance the viscoelasticity, thixotropy and apparent viscosity of XG solution at elevated temperatures, improving its sand carrying capacity, and widening the application of non-crosslinking fracturing fluids formulated with XG and modified XG. It is concluded that combined action of chemical modification and salts greatly improves the rheology, temperature resistance and shear resistance of XG solution, thereby widening the application of non-crosslinking fracturing fluids formulated with XG, especially the XG fracturing fluids mixed with seawater.

     

  • loading
  • [1]
    王永辉, 卢拥军, 李永平, 等. 非常规储层压裂改造技术进展及应用[J]. 石油学报, 2012, 33(S1):150-158.

    WANG Yonghui, LU Yongjun, LI Yongping, et al. Progress and application of hydraulic technology in unconventional reservoir[J]. Acta Petrolei Sinica, 2012, 33(S1):150-158.
    [2]
    WANG P ING, J IANG RUIZHONG, WANG SHICHAO, et al. Lessons learned from north America and current status of unconventional gas exploration and exploitation in China[Z]. SPE 153071, 2012.
    [3]
    AARTHY P, VIJAYAKUMAR J. Production, recovery and applications of xanthan gum by Xanthomonas campestris[J]. Journal of Food Engineering, 2011,106(1):1-12.
    [4]
    郭瑞, 丁恩勇. 黄原胶的结构、性能与应用[J]. 牙膏工业, 2006, 36(1):42-45.

    GUO Rui, DING Enyong. Structure performance and applications of xanthan gum[J]. China Surfactant Detergent and Cosmetics, 2006,36(1):42-45.
    [5]
    ZIRNSAK M, BOGER D, TIRTAATMADJA V. Steady shear and dynamic rheological properties of xanthan gum solutions in viscous solvents[J]. Journal of Rheology, 1999,43(3):627-650.
    [6]
    侯晓晖, 王煦, 王玉斌. 水基压裂液聚合物增稠剂的应用状况及展望[J]. 西南石油学院学报, 2004, 26(5):60-62.

    HOU Xiaohui, WANG Xu, WANG Yubin. Application and prospects of polymer thickener used in water-base fracturing fluids[J]. Journal of Southwest Petroleum Institute, 2004, 26(5):60-62.
    [7]
    黄彩贺, 卢拥军, 邱晓惠, 等. 支撑剂单颗粒沉降速率与线性胶压裂液黏弹性关系[J]. 钻井液与完井液, 2015, 32(6):72-77.

    HUANG Caihe, LU Yongjun, QIU Xiaohui, et al. Study on relationship between sedimentation rate of single proppant particle and viscoelasticity of linear colloid fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2015,32(6):72-77.
    [8]
    BARATI R, LIANG J T. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells[J]. Journal of Applied Polymer Science, 2014,131(16):318-323.
    [9]
    邬国栋,阿不都维力·阿不力米提,杨建强,等. 非交联植物胶XG-1压裂液技术[J]. 钻井液与完井液, 2015, 32(4):81-83.

    WU Guodong, Abuduweili·Abulimiti,YANG Jianqiang,et al. Non-crosslinking vegetable gum fracturing fluid XG-1 technology[J]. Drilling Fluid & Completion Fluid, 2015, 32(4):81-83.
    [10]
    VITTADINI E, DICHINSON L C, CHINACHOTI P. NMR water mobility in xanthan and locust bean gum mixtures:possible explanation of microbial response[J]. Carbohydrate Polymers, 2002, 49(3):261-269.
    [11]
    钱晓琳, 苏建政, 吴文辉, 等. 疏水改性黄原胶HMXGC8水溶液黏度特征[J]. 油田化学, 2007, 24(2):154-157.

    QIAN Xiaolin, SU Jianzheng, WU Wenhui, et al. Aqueous solution viscosity properties of hydrophobically modified xanthan gum HMXG-C8[J]. Oilfield Chemistry, 2007, 24(2):154-157.
    [12]
    赵志强,苗海龙,易勇. 分散型速溶黄原胶DIXG的制备与评价[J]. 钻井液与完井液, 2015, 32(2):26-28.

    Zhao Zhiqiang,MIAO Hailong, YI Yong. Preparation and evaluation of a dispersible instant xanthan gum[J]. Drilling Fluid & Completion Fluid, 2015, 32(2):26-28.
    [13]
    ADHIKARY P, SINGH R P. Synthesis, characterization, and flocculation characteristics of hydrolyzed and unhydrolyzed polyacylamide grafted xanthan gum[J]. Journal of Applied Polymer Science, 2004, 94(4):1411-1419.
    [14]
    RODD A B, DUNSTAN D E, BOGER D V, et al. Heterodyne and nonergodic approach to dynamic light scattering of polymer gels:aqueous xanthan in the presence of metal ions (Aluminum(Ⅲ))[J]. Macromolecules, 2001, 34(10):3339-3352.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (594) PDF downloads(211) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return