JIANG Qihui, JIANG Guancheng, LU Yongjun, LIU Ping, QIU Xiaohui. A High Temperature Shear-resistant Association Supramolecular Polymer Weak Gel Fracturing Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(6): 106-110. doi: 10.3969/j.issn.1001-5620.2016.06.019
Citation: JIANG Qihui, JIANG Guancheng, LU Yongjun, LIU Ping, QIU Xiaohui. A High Temperature Shear-resistant Association Supramolecular Polymer Weak Gel Fracturing Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(6): 106-110. doi: 10.3969/j.issn.1001-5620.2016.06.019

A High Temperature Shear-resistant Association Supramolecular Polymer Weak Gel Fracturing Fluid

doi: 10.3969/j.issn.1001-5620.2016.06.019
  • Received Date: 2016-06-09
  • Publish Date: 2016-11-30
  • Supramolecular polymer chemistry is a new interdiscipline of supramolecular chemistry and polymer chemistry. Based on the research work previously done on supramolecular fracturing fluid, a high temperature shear-resistant supramolecular polymer viscosifer, SPM-2, has been synthesized with a zwitterionic surfactant ASF-1 (having good solubilization to hydrophobic monomers), a synthesized long-chain unsaturated cationic monomer, LCM, and another synthesized high temperature monomer HTM, through micelle copolymerization. By compounding the synthesized SPM-2 and PCA-1 (a physical crosslinking agent with worm-like micelle), an association supramolecular polymer fracturing fluid (0.8% SPM-2+0.5% PCA-1) with weak gel has been developed. This fracturing fluid has supramolecular "honeycomb" grid structure, and apparent viscosity that increase with increase in the concentration of PCA-1. It has been proved that ASF-1 and LCM formed strong physical crosslinking. Sheared at 150℃ and 170 s-1 for 2 h, the apparent viscosity of the fracturing fluid was maintained at about 58 mPa.s, higher than the apparent viscosity of the SPM-2 solution itself by 30 mPa.s. Increased the shear rate frst from 40 s-1 to 170 s-1, and then reduced the shear rate to 40 s-1 again, the viscosity of the fracturing fluid was reduced and resumed sharply, showing good resistance to shearing. Scanned at frequency of 0.01-10 Hz, the elasticity of the fracturing fluid was better than its viscosity. The settling rate of proppant in the fracturing fluid was less than 8×10-3 mm/s. Compared with the supramolecular polymer SPM-2, this fracturing fluid has suspending capacitythat is an order of magnitude higher. The fracturing fluid, after gel-breaking at 90℃ for 2 h, had viscosity less than 2 mPa·s, and no residue had been found therein. Core experiment indicated that core damage by the fracturing fluid was lower than 10%. Laboratoryexperiments showed that this fracturing fluid can satisfy the needs for fracturing high temperature tight sand gas reservoirs.

     

  • [1]
    SCHMIDT B, HETZER M, RITTER H, et al. UV light and temperature responsive supramolecular ABA triblock copolymers via reversible cyclodextrin complexation[J]. Macromolecules, 2013, 46(3):1054-1065.
    [2]
    VÉCHAMBER C, CALLIES X, FONTENEAU C, et al. Microstructure and self-assembly of supramolecular polymers center-functionalized with strong stickers[J]. Macromolecules, 2015, 48(22):8232-8239.
    [3]
    PAHNKE K, ALTINTAS O, SCHMIDT F G, et al. Entropic effects on the supramolecular self-assembly of macromolecules[J].ACS Macro Lett, 2015, 4(7):774-777.
    [4]
    倪一萍, 陈建定. 超分子聚合物研究进展[J]. 合成树脂及塑料, 2008, 25(5):73-77.

    NI Yiping, CHEN Jianding. Research progress on supramolecular polymers[J]. China Synthetic Resin and Plastics, 2008, 25(5):73-77.
    [5]
    蒋其辉, 蒋官澄, 刘冲, 等. 超分子压裂液体系的研制及评价[J]. 钻井液与完井液, 2008, 25(5):73-77.

    JIANG Qihui, JIANG Guancheng, LIU Chong, et al. Development and evaluation of supramolecular fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(5):73-77.
    [6]
    BIGGS S, HILL A, SELB J, et al. Copolymerization of acrylamide and a hdydrophobic monomer in an aqueous micellar medium:effect of the surfactant on the copolymer microstructure[J]. Journal of Chemical Physics, 1992, 96(3):1505-1511.
    [7]
    THOMAS A, GAILLARD N, FAVERO C. Novel Associative Acrylamide-based Polymers for Proppant Transport in Hydraulic Fracturing Fluids[C]//SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 2013.
    [8]
    李曙光, 郭大立, 赵金洲, 等. 表面活性剂压裂液机理与携砂性能研究[J]. 西南石油大学学报(自然科学版), 2011, 33(3):133-136. LI Shuguang, GUO Dali, ZHAO Jinzhou, et al. Research on mechanism and sand-carrying performance of the surfactant fracturing fluid[J].Journal of Southwest Petroleum University(Science & Technology Edition), 2011, 33(3):133-136.
    [9]
    ASADI M, SHAH S N, LORD D L. Static/dynamic settling of proppant in non-newtonian hydraulic fracturing fluids[C]//SPE Mid-Continent Operations Symposium. Society of Petroleum Engineers, 1999.
  • Relative Articles

  • Cited by

    Periodical cited type(11)

    1. 刘丰钢,李晓骁,李翔,王浩颐,鞠野,徐国瑞. 水基四元超分子微球功能评价及深部调剖适应性. 精细石油化工. 2024(02): 15-20 .
    2. 周柄男,滕大勇,丁秋炜,张昕,张宇. 多功能压裂液稠化剂的合成和性能评价. 精细石油化工. 2024(03): 38-42 .
    3. 吴艳华. 鄂尔多斯盆地深层煤压裂液研究及应用. 广州化工. 2023(02): 224-226 .
    4. 熊利军,王犁,吴洋,鲁红升. 耐高温清洁压裂液的制备及性能评价. 精细化工. 2022(01): 204-211 .
    5. 孙金声,杨景斌,白英睿,吕开河,程荣超,蒋官澄,郝惠军,张洁. 超分子凝胶形成机理及其在油气钻采工程领域应用现状和前景. 石油学报. 2022(09): 1334-1350 .
    6. 陈磊,鲍文辉,郭布民,王杏尊,李梦,孙厚台. 耐高温海水基压裂液稠化剂性能评价. 油田化学. 2020(01): 17-21+28 .
    7. 蒋文学,张满,张进科,谷向东,金娜,李勇. 低伤害可回收小分子线性胶压裂液的研究与应用. 长江大学学报(自然科学版). 2020(06): 55-61+7 .
    8. 蒋其辉,杨向同,王永红,李会丽,宁坤. 一种物理凝胶压裂液的耐温耐剪切评价与机理分析. 钻井液与完井液. 2020(04): 526-531 . 本站查看
    9. 陈亚联,赵勇,廖乐军. 阳离子型双子高粘弹压裂液体系开发. 应用化工. 2019(10): 2331-2334 .
    10. 杨浩珑,向祖平,李龙,袁迎中. CO_2泡沫双子表面活性剂清洁压裂液研究与试验. 石油钻探技术. 2018(02): 92-97 .
    11. 毛金成,杨小江,宋志峰,张俊江,王雷,赵金洲. 耐高温清洁压裂液体系HT-160的研制及性能评价. 石油钻探技术. 2017(06): 105-109 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.8 %FULLTEXT: 26.8 %META: 71.0 %META: 71.0 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.6 %其他: 2.6 %China: 1.8 %China: 1.8 %上海: 34.3 %上海: 34.3 %东营: 0.1 %东营: 0.1 %北京: 4.9 %北京: 4.9 %台州: 0.4 %台州: 0.4 %合肥: 0.3 %合肥: 0.3 %哥伦布: 0.4 %哥伦布: 0.4 %天津: 0.3 %天津: 0.3 %张家口: 3.7 %张家口: 3.7 %成都: 1.1 %成都: 1.1 %晋中: 0.8 %晋中: 0.8 %杭州: 0.3 %杭州: 0.3 %松原: 0.3 %松原: 0.3 %林肯: 0.8 %林肯: 0.8 %格兰特县: 0.8 %格兰特县: 0.8 %潮州: 0.1 %潮州: 0.1 %盘锦: 0.1 %盘锦: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 23.1 %芒廷维尤: 23.1 %芝加哥: 0.8 %芝加哥: 0.8 %荆州: 0.4 %荆州: 0.4 %衢州: 0.3 %衢州: 0.3 %西宁: 13.3 %西宁: 13.3 %西安: 0.1 %西安: 0.1 %西雅图: 0.1 %西雅图: 0.1 %许昌: 0.1 %许昌: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.1 %郑州: 0.1 %长治: 0.1 %长治: 0.1 %青岛: 0.3 %青岛: 0.3 %驻马店: 7.9 %驻马店: 7.9 %其他China上海东营北京台州合肥哥伦布天津张家口成都晋中杭州松原林肯格兰特县潮州盘锦秦皇岛芒廷维尤芝加哥荆州衢州西宁西安西雅图许昌贵阳运城郑州长治青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (738) PDF downloads(276) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return