Volume 33 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
LI Qi, WANG Zaixing, SHEN Liyang, WANG Yaojia, LI Xuyang. Optimization of Drilling Fluid Rheology Pattern Using Improved Golden Section Method[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(1): 57-62. doi: 10.3969/j.issn.1001-5620.2016.01.012
Citation: LI Qi, WANG Zaixing, SHEN Liyang, WANG Yaojia, LI Xuyang. Optimization of Drilling Fluid Rheology Pattern Using Improved Golden Section Method[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(1): 57-62. doi: 10.3969/j.issn.1001-5620.2016.01.012

Optimization of Drilling Fluid Rheology Pattern Using Improved Golden Section Method

doi: 10.3969/j.issn.1001-5620.2016.01.012
  • Received Date: 2015-09-11
  • Publish Date: 2016-01-30
  • Rheological parameters of drilling fluid and selection of rheology pattern play an important role in drilling operation. Using exhaust algorithm and other methods, such as numerical computation method, regression analysis and optimization theory, three evaluation indices, i.e., correlation index, sum of squares of residues and variance of residues are introduced. Using golden section method, the contraction of the root interval can be accelerated. These studies give birth to the so called improved golden section method. In this improved golden section method, initial iterative values become unnecessary, and the method has good convergence, getting rid of deficiencies of the rheological model presently in use. This method is suitable for the parameter calculation and optimization of rheological patterns using 2-parameter, 3-parameter and 4-parameter equations. Using computer language MATLAB, large scale computation can be realized. Comparison of the computation results and those of others shows that the three evaluation indices presented are useful, and when used in combination with the improved golden section method, rheological parameters can be calculated, and rheological model optimized with good accuracy. The computational result of the variance of residue is reduced by 19.7%, a higher computational accuracy.


  • loading
  • Bingham E C. Plasticity and elasticity[J]. Journal of the Franklin Institute,1924,197(1):99-115.
    Ostwald W. The velocity function of viscosity of disperse systems[J]. Kolloid-Zeit,1952,36:99-117.
    Casson N. A flow equation for pigment-oil suspensions of the printing ink type[J]. Rheology of disperse systems, 1959,84.
    Herschel W H,Bulkley R. Measurement of consistency as applied to rubber benzene solutions[C]//Am. Soc. Test Proc. 1926,26(2):621-633.
    Robertson R E,Stiff Jr H A. An improved mathematical model for relating shear stress to shear rate in drilling fluids and cement slurries[J]. Society of Petroleum Engineers Journal,1976,16(1):31-36.
    白家祉. 带屈服值的假塑性流体的双曲模式方程与压降计算式[J]. 石油学报,1980,1(2):57-62. Bai Jiazhi. A new hyperbolic model of yield-pseudoplastic fluids and pressure drop formulas[J]. Acta Petrolei Sinica,1980,1(2):57-62.
    郭小阳,刘崇建,马思平. 非牛顿液体流变模式的研究[J]. 天然气工业,1997,17(4):52-58. Guo Xiaoyang,Liu Chongjian,Ma Siping. Research on non-Newton liquid rheology mode[J].Natural Gas Industry,1997,17(4):52-58.
    Sisko A W. The flow of lubricating greases[J]. Industrial & Engineering Chemistry,1958,50(12):1789-1792.
    樊洪海,冯广庆,王果,等. 一种新的流变模式及其应用性评价[J]. 中国石油大学学报(自然科学版), 2010,34(5):89-93. Fan Honghai,Feng Guangqing,Wang Guo,et al. A new rheological model and its application evaluation[J]. Journal of China University of Petroleum(Natural Science),2010,34(5):89-93.
    周长虹,崔茂荣,黄雪静,等. 钻井液常用流变模式及其优选方法[J]. 中国科技信息,2005,22:89-90. Zhou Changhong, Cui Maorong, Huang Xuejing, et al. Conventional rheological models and optimization methods of drilling fluids[J]. China Science and Technology Information,2005,22:89-90.
    胡茂炎,尹文斌,郑秀华. 钻井液流变参数计算软件的开发及流变模式的优化[J]. 钻井液与完井液,2005, 22(1):28-30. Hu Maoyan,Yin Wenbin,Zheng Xiuhua. A drilling fluid rheological parameter calculation software and the rheological model's optimization[J]. Drilling Fluid & Completion Fluid,2005,22(1):28-30.
    罗跃,王永远. 灰色关联分析法优选钻井液流变模式[J]. 天然气工业,1992,12(01):46-48. Luo Yue,Wang Yongyuan. Using gray correlation analysis method to optimize rheological mode of drilling fluid[J]. Natural Gas Industry,1992,12(01):46-48.
    张晋凯, 李根生, 郭宇健. 钻井液流变模式的优选与评价[J]. 科学技术与工程, 2013, 13(26):7619-7623. Zhang Jinkai,Li Gensheng,Guo Yujian. Optimization and evaluation on drilling fluid rheological model[J]. Science Technology and Engineering,2013,13(26):7619-7623.
    方敏,鲁港,曹传文. 钻井液流变参数的非线性最小二乘估计算法[J]. 同济大学学报(自然科学版), 2009,07:888-892. Fang Min,Lu Gang,Cao Chuanwen. A new method of non-linear least square estimation of rheological parameter for drilling fluid[J]. Journal of TongJi University(Natural Science),2009,07:888-892.
    何晓群,刘文卿. 应用回归分析[M]. 北京:中国人民大学出版社,2007. He Xiaoqun, Liu Wenqing. Spplied regression analysis[M]. Beijing:China Renmin University Press Co. Ltd, 2007.
    宋巨龙,王香柯,冯晓慧. 最优化方法[M]. 西安:西安电子科技大学出版社,2012:30-34. Song Julong,Wang Xi angke,Feng Xi aohui. Optimization method[M]. Xi'an:Xidian university press, 2012:30-34.
    郭朝学. 泥浆和水泥浆管道轴向流动压降计算理论与实验研究[D]. 成都:西南石油大学,2000. Guo Zhaoxue. Theoretical calculation and experimental study of pressure loss in axil flow of drilling fluid and cement slurry[D]. Chengdu:Southwest Petroleum University,2000.
    郭晓乐,汪志明,陈亮. 利用黄金分割搜索算法优选钻井液最优流变模式[J]. 钻井液与完井液,2009,26(1):1-2. Guo Xiaole,Wang Zhiming,Chen Liang. Select optimum drilling fluid rheological model using Fibonacci search method[J]. Drilling Fluid & Completion Fluid, 2009,26(1):1-2.
    胡茂焱,尹文斌,郑秀华,等. 钻井液流变参数计算方法的分析及流变模式的优选[J]. 探矿工程(岩土钻掘工程),2004,07:41-45. Hu Maoyan,Yin Wenbin,Zheng Xiuhua,et al. Analyses on calculation methods of rheological parameters of drilling fluid and optimization of rheological model[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2004,07:41-45.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (604) PDF downloads(173) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint