Volume 43 Issue 1
Feb.  2026
Turn off MathJax
Article Contents
ZHEN Huaibin, LI Shuguang, WANG Feng, et al.A high efficiency low damage fracturing fluid for deep coalbed methane development[J]. Drilling Fluid & Completion Fluid,2026, 43(1):104-112 doi: 10.12358/j.issn.1001-5620.2026.01.014
Citation: ZHEN Huaibin, LI Shuguang, WANG Feng, et al.A high efficiency low damage fracturing fluid for deep coalbed methane development[J]. Drilling Fluid & Completion Fluid,2026, 43(1):104-112 doi: 10.12358/j.issn.1001-5620.2026.01.014

A High Efficiency Low Damage Fracturing Fluid for Deep Coalbed Methane Development

doi: 10.12358/j.issn.1001-5620.2026.01.014
  • Received Date: 2025-08-16
  • Accepted Date: 2025-09-30
  • Rev Recd Date: 2025-09-21
  • Available Online: 2026-02-09
  • Publish Date: 2026-02-09
  • In developing deep coalbed methane (CBM), existing fracturing fluids have deficiencies such as poor sand carrying capacity and high core damage. To overcome these deficiencies, a fracturing fluid system (HMP/OP) was developed with a main fracturing fluid agent designed and developed based on principles of supramolecular polymer chemistry. This main agent is used for deep CBM production and is physically crosslinked with surfactants to formulate the HMP/OP fracturing fluid with high sand carrying capacity and low formation damage. Laboratory experiments on its drag reducing performance, sand carry capacity, gel breaking capacity, core damage potential as well as adsorption/desorption capacity show that HMP/OP can significantly reduce flow drag (by 73%). At 100℃ and 20% sand content, the time for the sand to be suspended by the HMP/OP fracturing fluid is 110 min, and the settling rate of sand is 0.8 cm/min. At 80℃, after gel breaking for 2 hours, the viscosity and the residue content of the fluid are 4.63 mPa·s and 353.12 mg/L, respectively. The percent core damage caused by the HMP/OP fluid after gel breaking is only 17.44%. Moreover, the adsorption capacity of HMP/OP on the surfaces of coal rocks is only 0.32 mg/g. Adding 0.2% desorption agent (SH-12) into the HMP/OP fluid, 1.72 mL/g methane can be separated from the fluid after gel breaking. The fracturing fluid HMP/OP, developed through physical crosslinking, possesses high sand ratio, low formation damage, low adsorption capacity and enhanced methane desorption capacities, satisfying the engineering technical requirements of efficient development of coalbed methane.

     

  • loading
  • [1]
    李树国, 唱永磊, 汪大林, 等. 深层煤层气开发压裂返排液处理工艺技术研究[J]. 给水排水, 2025, 51(2): 87-91.

    LI Shuguo, CHANG Yonglei, WANG Dalin, et al. Research on treatment technology and process for fracturing flowback fluid in deep coalbed methane development[J]. Water & Wastewater Engineering, 2025, 51(2): 87-91.
    [2]
    管保山, 刘玉婷, 刘萍, 等. 煤层气压裂液研究现状与发展[J]. 煤炭科学技术, 2016, 44(5): 11-17,22.

    GUAN Baoshan, LIU Yuting, LIU Ping, et al. Present situation and development of coalbed methane fracturing fluid[J]. Coal Science and Technology, 2016, 44(5): 11-17,22.
    [3]
    KANG W L, ZHOU B B, ISSAKHOV M, et al. Advances in enhanced oil recovery technologies for low permeability reservoirs[J]. Petroleum Science, 2022, 19(4): 1622-1640. doi: 10.1016/j.petsci.2022.06.010
    [4]
    ZHAO T B, QIN Q R. Characterization methods for current in-situ stress in oil and gas reservoirs: a mini review[J]. Frontiers in Earth Science, 2023, 11: 1276807. doi: 10.3389/feart.2023.1276807
    [5]
    陈昊, 毕凯琳, 张军, 等. 非常规油气开采压裂用减阻剂研究进展[J]. 油田化学, 2021, 38(2): 347-359.

    CHEN Hao, BI Kailin, ZHANG Jun, et al. Progress of drag reducers used in slickwater hydrofracturing of unconventional hydrocarbons[J]. Oilfield Chemistry, 2021, 38(2): 347-359.
    [6]
    郭建春, 任山, 唐朝钧, 等. 一体化变黏抗盐降阻剂的研制及应用[J]. 石油与天然气化工, 2022, 51(5): 80-86.

    GUO Jianchun, REN Shan, TANG Zhaojun, et al. Development and application of an integrated variable viscosity and anti-salt drag reducing agent[J]. Chemical Engineering of Oil and Gas, 2022, 51(5): 80-86.
    [7]
    王博, 张翼, 李华山, 等. 新疆阜康区块煤层气压裂液评价及伤害机理研究[J]. 内蒙古煤炭经济, 2021(17): 35-36.

    WANG Bo, ZHANG Yi, LI Huashan, et al. Research on the evaluation and damage mechanism of coalbed methane fracturing fluid in Fukang block, Xinjiang[J]. Inner Mongolia Coal Economy, 2021(17): 35-36.
    [8]
    周睿, 江厚顺, 简霖, 等. 煤层气压裂液伤害对比实验研究[J]. 当代化工, 2017, 46(10): 2153-2155,2173.

    ZHOU Rui, JIANG Houshun, JIAN Lin, et al. Experimental study on damage of coalbed gas fracturing fluid[J]. Contemporary Chemical Industry, 2017, 46(10): 2153-2155,2173.
    [9]
    张永成, 刘亮亮, 李德慧, 等. 深部煤层气藏低伤害胍胶压裂液评价与应用[J]. 煤矿安全, 2024, 55(9): 71-77.

    ZHANG Yongcheng, LIU Liangliang, LI Dehui, et al. Evaluation and application of low damage guar gum fracturing fluid in deep coalbed methane reservoirs[J]. Safety in Coal Mines, 2024, 55(9): 71-77.
    [10]
    田跃儒, 张双双, 郑晓斌. 柳林区块煤层气压裂液评价及伤害机理研究[J]. 煤炭技术, 2021, 40(5): 69-71.

    TIAN Yueru, ZHANG Shuangshuang, ZHENG Xiaobin. Study on evaluation and damage mechanism of coal-bed methane of fracturing fluid in Liulin block[J]. Coal Technology, 2021, 40(5): 69-71.
    [11]
    YANG H B, PAN S L, JIANG H Z, et al. Study of a high salt tolerant amphiphilic polymer and its salt thickening mechanism[J]. Journal of Molecular Liquids, 2024, 400: 124552. doi: 10.1016/j.molliq.2024.124552
    [12]
    AHMED M E, SULTAN A S, AL-SOFI A, et al. Optimization of surfactant-polymer flooding for enhanced oil recovery[J]. Journal of Petroleum Exploration and Production Technology, 2023, 13(10): 2109-2123. doi: 10.1007/s13202-023-01651-0
    [13]
    TAVAKKOLI O, KAMYAB H, SHARIATI M, et al. Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: a review[J]. Fuel, 2022, 312: 122867. doi: 10.1016/j.fuel.2021.122867
    [14]
    LI Z, KANG W, YANG H B, et al. Advances of supramolecular interaction systems for improved oil recovery(IOR)[J]. Advances in Colloid and Interface Science, 2022, 301: 102617. doi: 10.1016/j.cis.2022.102617
    [15]
    WANG Z P, GE Z L, LI R H, et al. Coupling effect of temperature, gas, and viscoelastic surfactant fracturing fluid on the microstructure and its fractal characteristics of deep coal[J]. Energy & Fuels, 2021, 35(23): 19423-19436.
    [16]
    ZHANG Q, CAI F, XIE H T, et al. Effects of clean fracturing fluids on coal microstructure and coalbed gas adsorption[J]. Scientific Reports, 2024, 14(1): 20428. doi: 10.1038/s41598-024-71371-w
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (3) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return