| Citation: | MA Yong, RAN Hang, WANG Yangsong, et al.Simulation research on friction characteristics of borehole wall fracture surfaces and structural instability in maokou carbonate formation in southern Sichuan[J]. Drilling Fluid & Completion Fluid,2026, 43(1):9-17 doi: 10.12358/j.issn.1001-5620.2026.01.002 |
| [1] |
易海永, 张本健, 谷明峰, 等. 四川盆地东部地区二叠系茅口组孤立浅滩的发现及天然气勘探潜力[J]. 天然气工业, 2024, 44(6): 1-11.
YI Haiyong, ZHANG Benjian, GU Mingfeng, et al. Discovery of isolated shoals in the Permian Maokou formation of eastern Sichuan basin and their natural gas exploration potential[J]. Natural Gas Industry, 2024, 44(6): 1-11.
|
| [2] |
王国锋, 张大伟, 邓守伟, 等. 四川盆地自贡区块茅口组岩溶储层发育特征及其主控因素[J]. 天然气工业, 2022, 42(9): 63-75. doi: 10.3787/j.issn.1000-0976.2022.09.006
WANG Guofeng, ZHANG Dawei, DENG Shouwei, et al. Development characteristics and main controlling factors of Maokou formation karst reservoirs in Zigong block of the Sichuan basin[J]. Natural Gas Industry, 2022, 42(9): 63-75. doi: 10.3787/j.issn.1000-0976.2022.09.006
|
| [3] |
张嘉宁. 非均质页岩水力压裂数值模拟研究[D]. 合肥: 中国科学技术大学, 2022.
ZHANG Jianing. Numerical simulation of hydraulic fracturing in heterogeneous shale[D]. Hefei: University of Science and Technology of China, 2022.
|
| [4] |
范翔宇, 蒙承, 张千贵, 等. 超深地层井壁失稳理论与控制技术研究进展[J]. 天然气工业, 2024, 44(1): 159-176. doi: 10.3787/j.issn.1000-0976.2024.01.015
FAN Xiangyu, MENG Cheng, ZHANG Qiangui, et al. Research progress in the evaluation theory and control technology of wellbore instability in ultra-deep strata[J]. Natural Gas Industry, 2024, 44(1): 159-176. doi: 10.3787/j.issn.1000-0976.2024.01.015
|
| [5] |
YOU L J, KANG Y L, CHEN Z X, et al. Wellbore instability in shale gas wells drilled by oil-based fluids[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 294-299. doi: 10.1016/j.ijrmms.2014.08.017
|
| [6] |
杨斌, 许成元, 张浩, 等. 深部破碎地层井壁失稳机理研究进展与攻关对策[J]. 石油学报, 2024, 45(5): 875-888. doi: 10.7623/syxb202405009
YANG Bin, XU Chengyuan, ZHANG Hao, et al. Research progress on mechanism of wellbore instability in deep fractured formations and related countermeasures[J]. Acta Petrolei Sinica, 2024, 45(5): 875-888. doi: 10.7623/syxb202405009
|
| [7] |
TEMBE S, LOCKNER D A, WONG T F. Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B3): B03416.
|
| [8] |
宋义敏, 邓琳琳, 吕祥锋, 等. 岩石摩擦滑动变形演化及声发射特征研究[J]. 岩土力学, 2019, 40(8): 2899-2906,2913.
SONG Yimin, DENG Linlin, LYU Xiangfeng, et al. Study of acoustic emission characteristics and deformation evolution during rock frictional sliding[J]. Rock and Soil Mechanics, 2019, 40(8): 2899-2906,2913.
|
| [9] |
TICHY J A, MEYER D M. Review of solid mechanics in tribology[J]. International Journal of Solids and Structures, 2000, 37(1/2): 391-400.
|
| [10] |
KOHLI A H, ZOBACK M D. Frictional properties of shale reservoir rocks[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(9): 5109-5125. doi: 10.1002/jgrb.50346
|
| [11] |
康毅力, 杨斌, 李相臣, 等. 页岩水化微观作用力定量表征及工程应用[J]. 石油勘探与开发, 2017, 44(2): 301-308. doi: 10.11698/PED.2017.02.17
KANG Yili, YANG Bin, LI Xiangchen, et al. Quantitative characterization of micro forces in shale hydration and field applications[J]. Petroleum Exploration and Development, 2017, 44(2): 301-308. doi: 10.11698/PED.2017.02.17
|
| [12] |
BONNELYE A, SCHUBNEL A, DAVID C, et al. Strength anisotropy of shales deformed under uppermost crustal conditions[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 110-129. doi: 10.1002/2016JB013040
|
| [13] |
RAMANA Y V, GOGTE B S. Dependence of coefficient of sliding friction in rocks on lithology and mineral characteristics[J]. Engineering Geology, 1989, 26(3): 271-279. doi: 10.1016/0013-7952(89)90014-8
|
| [14] |
BYERLEE J. Friction of rocks[J]. Pure and Applied Geophysics, 1978, 116(4): 615-626.
|
| [15] |
LIU X Z, VEMIK L, NUR A. Effects of saturating fluids on seismic velocities in shale[C]//Paper presented at the 1994 SEG Annual Meeting. Los Angeles, California, 1994: SEG-1994-1121.
|
| [16] |
BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1): 1-54.
|
| [17] |
ZHANG J G, AL-BAZALI T M, CHENEVERT M E, et al. Factors controlling the membrane efficiency of shales when interacting with water-based and oil-based muds[J]. SPE Drilling & Completion, 2008, 23(2): 150-158.
|
| [18] |
HADIZADEH J, SEHHATI R, TULLIS T. Porosity and particle shape changes leading to shear localization in small-displacement faults[J]. Journal of Structural Geology, 2010, 32(11): 1712-1720. doi: 10.1016/j.jsg.2010.09.010
|
| [19] |
HOMAND F, BELEM T, SOULEY M. Friction and degradation of rock joint surfaces under shear loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(10): 973-999. doi: 10.1002/nag.163
|
| [20] |
YAN X P, YOU L J, KANG Y L, et al. Impact of drilling fluids on friction coefficient of brittle gas shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 144-152. doi: 10.1016/j.ijrmms.2018.04.026
|
| [21] |
YAN W, GE H K, WANG J B, et al. Experimental study of the friction properties and compressive shear failure behaviors of gas shale under the influence of fluids[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 153-161. doi: 10.1016/j.jngse.2016.04.019
|
| [22] |
LABENSKI F, REID P, SANTOS H. Drilling fluids approaches for control of wellbore instability in fractured formations[C]//Paper presented at the SPE/IADC Middle East Drilling Technology Conference and Exhibition. Abu Dhabi, United Arab Emirates, 2003: SPE-85304-MS.
|
| [23] |
马天寿, 陈平. 页岩地层中孔隙热弹性井眼稳定力学模型[J]. 岩石力学与工程学报, 2015, 34(S2): 3613-3623.
MA Tianshou, CHEN Ping. Porothermoelastic mechanical model of wellbore stability in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3613-3623.
|
| [24] |
TAN Q G, YANG B, YOU L J, et al. Drill-in fluid optimization for formation damage control considering salt dissolution in saline-lacustrine reservoirs[J]. SPE Journal, 2024, 29(3): 1271-1288. doi: 10.2118/218018-PA
|
| [25] |
HUANG T, ZHONG Y, MOU Q H, et al. Discrete element method simulation of competitive fracture propagation in staged multi-cluster fracturing in shale oil reservoirs[J]. Bulletin of Engineering Geology and the Environment, 2024, 83(10): 404. doi: 10.1007/s10064-024-03897-2
|
| [26] |
杨明磊, 诸丹诚, 李涛, 等. 川南地区中二叠统茅口组颗粒滩对早成岩期岩溶储层的控制[J]. 现代地质, 2020, 34(2): 356-369. doi: 10.19657/j.geoscience.1000-8527.2020.02.14
YANG Minglei, ZHU Dancheng, LI Tao, et al. Control of eogenetic karst reservoir by shoals in middle permian Maokou formation, southern Sichuan basin[J]. Geoscience, 2020, 34(2): 356-369. doi: 10.19657/j.geoscience.1000-8527.2020.02.14
|
| [27] |
潘冠昌, 杨斌, 张浩, 等. 超深层碳酸盐岩裂缝面形态与摩擦因数研究[J]. 断块油气田, 2022, 29(6): 794-799.
PAN Guanchang, YANG Bin, ZHANG Hao, et al. Research on fracture surface morphology and friction coefficient of ultra-deep carbonate rock[J]. Fault-Block Oil and Gas Field, 2022, 29(6): 794-799.
|
| [28] |
刘锋报, 孙金声, 尹达, 等. 塔里木万米科探井垮塌机理研究及技术对策[J]. 钻井液与完井液, 2024, 41(6): 709-718. doi: 10.12358/j.issn.1001-5620.2024.06.002
LIU Fengbao, SUN Jinsheng, YIN Da, et al. Mechanisms of and technical measures for solving borehole wall instability in ten-thousand-meter scientific exploration wells in Tarim basin[J]. Drilling Fluid & Completion Fluid, 2024, 41(6): 709-718. doi: 10.12358/j.issn.1001-5620.2024.06.002
|
| [29] |
LI D Q, YANG B, JIN J B, et al. Friction coefficients calculation via surface roughness characterization for tight sedimentary rocks[J]. Arabian Journal for Science and Engineering, 2023, 48(7): 9287-9298. doi: 10.1007/s13369-022-07314-2
|
| [30] |
姚路, 马胜利. 断层同震滑动的实验模拟——岩石高速摩擦实验的意义、方法与研究进展[J]. 地球物理学进展, 2013, 28(2): 607-623.
YAO Lu, MA Shengli. Experimental simulation of coseismic fault sliding-significance, technological methods and research progress of high-velocity frictional experiments[J]. Progress in Geophysics, 2013, 28(2): 607-623.
|
| [31] |
吕坤鸿, 张辉, 田得粮, 等. 鄂尔多斯盆地深部煤层井壁失稳机理及钻井液对策[J]. 钻井液与完井液, 2024, 41(5): 564-573. doi: 10.12358/j.issn.1001-5620.2024.05.001
LYU Kunhong, ZHANG Hui, TIAN Deliang, et al. Mechanisms of borehole wall instability of deep coal seam in Ordos basin and drilling fluid countermeasures[J]. Drilling Fluid & Completion Fluid, 2024, 41(5): 564-573. doi: 10.12358/j.issn.1001-5620.2024.05.001
|
| [32] |
CUNDALL P A. A computer model for simulating progressive large-scale movements in blocky rock systems[C]//Proceedings of the Symposium of the International Society for Rock Mechanics, 1971.
|
| [33] |
侯冰, 金衍, 李松, 等. 不同粒径特征的砾石层井壁围岩破坏机制[J]. 天然气工业, 2015, 35(11): 66-70. doi: 10.3787/j.issn.1000-0976.2015.11.010
HOU Bing, JIN Yan, LI Song, et al. Failure mechanisms of borehole wall rocks in gravel beds with different grain sizes[J]. Natural Gas Industry, 2015, 35(11): 66-70. doi: 10.3787/j.issn.1000-0976.2015.11.010
|
| [34] |
KARATELA E, TAHERI A. Three-dimensional hydro-mechanical model of borehole in fractured rock mass using discrete element method[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 263-275. doi: 10.1016/j.jngse.2018.02.032
|
| [35] |
PARK N, OLSON J E E, Holder J. Stress-corrosion cracking as an alternative time-dependent shale-stability model[J]. SPE Drilling & Completion, 2010, 25(2): 168-176.
|
| [36] |
任鹏举,刘峰,韩东东,等. 渤中火成岩井壁失稳因素研究[J]. 钻采工艺, 2024, 47(3): 23-32.
REN Pengju,LIU Feng,HAN Dongdong,et al. Study on wellbore instability factors of igneous rock formation in Bozhong[J]. Drilling and Production Technology, 2024, 47(3): 23-32
|
| [37] |
高书阳, 薄克浩, 张亚云, 等. 川东北陆相页岩储层井壁失稳机理研究[J]. 钻井液与完井液, 2025, 42(2): 217-224. doi: 10.12358/j.issn.1001-5620.2025.02.009
GAO Shuyang, BO Kehao, ZHANG Yayun, et al. Study on wellbore instability mechanism of continental shale reservoir in northeastern Sichuan basin[J]. Drilling Fluid & Completion Fluid, 2025, 42(2): 217-224. doi: 10.12358/j.issn.1001-5620.2025.02.009
|
| [38] |
耿立军, 刘峰, 冮鹏, 等. 渤海盆地锦州25-1区块中部泥岩地层井壁失稳机理及钻井液对策[J]. 钻井液与完井液, 2025, 42(1): 58-65.
GENG Lijun, LIU Feng, GANG peng, et al. Mechanisms of borehole wall destabilization in drilling shale formations in thecentral part of block Jinzhou-25-1 in Bohai basin and drilling fluid countermeasures[J]. Drilling Fluid & Completion Fluid, 2025, 42(1): 58-65
|