Volume 42 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
DANG Donghong, HUANG Zhongwei, LI Jingbin, et al.Low thermal conductivity cement slurry for geothermal well cementing[J]. Drilling Fluid & Completion Fluid,2025, 42(6):781-787 doi: 10.12358/j.issn.1001-5620.2025.06.010
Citation: DANG Donghong, HUANG Zhongwei, LI Jingbin, et al.Low thermal conductivity cement slurry for geothermal well cementing[J]. Drilling Fluid & Completion Fluid,2025, 42(6):781-787 doi: 10.12358/j.issn.1001-5620.2025.06.010

Low Thermal Conductivity Cement Slurry for Geothermal Well Cementing

doi: 10.12358/j.issn.1001-5620.2025.06.010
  • Received Date: 2025-05-21
  • Rev Recd Date: 2025-07-01
  • Available Online: 2025-12-08
  • Publish Date: 2025-12-08
  • In geothermal energy development, the heat loss of cement sheath plays a key role in affecting heat extraction efficiency. In this study, using class G cement as the base slurry, and hollow glass microspheres and modified palygorskite fiber as composite low thermal conductivity material, a low thermal conductivity cement slurry was formulated through composition optimization. Laboratory experiments on the rheology, stability, thermal conductivity and compressive strength of the cement slurry were all tested. It was found that compared with conventional cement slurries, the thermal conductivity of this cement slurry is reduced by 74.4%, and the 7-d compressive strength of this cement slurry is 19.7 MPa. The use of the low thermal conductivity agents in this cement slurry makes the pores inside the set cement finer and more evenly distributed. This not only reduces the thermal conductivity of the cement; it also improves the mechanical performance and durability of the cement. This technology can be used to reduce the heat loss and enhance the efficiency of geothermal extraction.

     

  • loading
  • [1]
    WANG K, YUAN B, JI G M, et al. Acomprehensive review of geothermal energy extraction and utilization in oilfields[J]. Journal of Petroleum Science and Engineering, 2018, 168: 465-477. doi: 10.1016/j.petrol.2018.05.012
    [2]
    自然资源部中国地质调查局. 中国地热能发展报告-2018[M]. 北京: 中国石化出版社, 2018.

    China Geological Survey, Ministry of Natural Resources. China Geothermal Energy Development Report-2018[M]. Beijing: China Petrochemical Press, 2018.
    [3]
    王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9.

    WANG Guiling, LIU Yanguang, ZHU Xi, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1-9.
    [4]
    李晓益, 何汉平, 段友智, 等. 砂岩孔隙型地热井提高热效工艺分析[J]. 石油钻采工艺, 2017, 39(4): 484-490.

    LI Xiaoyi, HE Hanping, DUAN Youzhi, et al. Analysis on the thermal efficiency improvement process for geothermal well in porous sandstone[J]. Oil Drilling & Production Technology, 2017, 39(4): 484-490.
    [5]
    WON J, CHOI H J, LEE H, et al. Numerical investigation on the effect of cementing properties on the thermal and mechanical stability of geothermal wells[J]. Energies, 2016, 12(9): 1016.
    [6]
    李根生, 武晓光, 宋先知, 等. 干热岩地热资源开采技术现状与挑战[J]. 石油科学通报, 2022, 7(3): 343-364.

    LI Gensheng, WU Xiaoguang, SONG Xianzhi, et al. Status and challenges of hot dry rock geothermal resource exploitation[J]. Petroleum Science Bulletin, 2022, 7(3): 343-364.
    [7]
    张弛, 翟显治, 杨淯琨, 等. 地热井固井用导热与保温水泥研究进展[J]. 水泥, 2025(1): 5-8.

    ZHANG Chi, ZHAI Xianzhi, YANG Yukun, et al. Research progress of thermal conductivity and thermal insulation cement for cementing geothermal wells[J]. Cement, 2025(1): 5-8.
    [8]
    王建龙, 马兵, 安巧霞, 等. 轻质漂珠对HPMC/水泥基复合多孔保温材料性能的影响[J]. 硅酸盐通报, 2024, 43(5): 1840-1849.

    WANG Jianlong, MA Bing, AN Qiaoxia, et al. Effects of lightweight FACs on properties of HPMC/Cement-Based composite porous thermal insulation materials[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(5): 1840-1849.
    [9]
    庞洁, 李特, 魏炳乾. HEC取代水泥对玻璃纤维再生混凝土力学性能的影响[J]. 粉煤灰综合利用, 2023, 37(1): 53-57,125.

    PANG Jie, LI Te, WEI Bingqian. Influence of HEC replacement rate on mechanical properties of glass fiber recycled concrete[J]. Fly Ash Comprehensive Utilization, 2023, 37(1): 53-57,125.
    [10]
    嵇鹰, 樊帅, 薛宇泽, 等. 玻璃微珠/珍珠岩/稻壳灰对固井水泥性能影响[J]. 非金属矿, 2023, 46(1): 1-5.

    JI Ying, FAN Shuai, XUE Yuze, et al. Study on the effect of glass beads/expanded perlite/rice husk ash on the performance of oil well cement[J]. Non-Metallic Mines, 2023, 46(1): 1-5.
    [11]
    彭罗文, 艾明星, 石永, 等. 影响二氧化硅气凝胶/玻化微珠保温砂浆性能的因素[J]. 新型建筑材料, 2018, 45(7): 64-67.

    PENG Luowen, AI Mingxing, SHI Yong, et al. Factors affecting properties of silica aerogel/vitrified bead thermal insulation mortar[J]. New Building Materials, 2018, 45(7): 64-67.
    [12]
    张丰琰, 李立鑫, 代晓光, 等. 地热井保温水泥导热系数影响因素研究[J]. 太阳能学报, 2023, 44(9): 493-502.

    ZHANG Fengyan, LI Lixin, DAI Xiaoguang, et al. Research on influencing factors of thermal conductivity of thermal insulation cement for geothermal well[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 493-502.
    [13]
    张丰琰, 李立鑫, 韩丽丽. 保温水泥在中低温地热井中的应用及建议[J]. 地质与勘探, 2022, 58(2): 410-419.

    ZHANG Fengyan, LI Lixin, HAN Lili. Application and suggestions of the thermal insulation cement in Mid-Low temperature geothermal wells[J]. Geology and Exploration, 2022, 58(2): 410-419.
    [14]
    党冬红, 刘宁泽, 王丹, 等. 干热岩工况下水泥高温劣化性能的调控措施[J]. 钻井液与完井液, 2023, 40(3): 368-375.

    DANG Donghong, LIU Ningze, WANG Dan, et al. Control measures of cement high-temperature deterioration performance under dry-hot rock conditions [J]. Drilling Fluid & Completion Fluid, 2023, 40(3): 368-375.
    [15]
    肖京男, 李小江, 周仕明, 等. 干热岩超高温防衰退水泥浆体系及应用[J]. 钻井液与完井液, 2024, 41(1): 92-97.

    XIAO Jingnan, LI Xiaojiang, ZHOU Shiming, et al. Ultra-high temperature resistant cement slurry and its application in hot dry rock[J]. Drilling Fluid & Completion Fluid, 2024, 41(1): 92-97.
    [16]
    曹灶开, 谭慧静, 廖麟祥, 等. 表面改性玻化微珠增强地热保温固井水泥研究[J]. 钻探工程, 2024, 51(S1): 202-207.

    CAO Zaokai, TAN Huijing, LIAO Linxiang, et al. Research on surface modified vitrified microbeads for enhanced geothermal insulation cement[J]. Drilling Engineering, 2024, 51(S1): 202-207.
    [17]
    陈海杰, 严捍东. 漂珠、珠光砂对玻化微珠保温砂浆性能影响的试验研究[J]. 福建建设科技, 2011(6): 36-38.

    CHEN Haijie, YAN Handong. Experimental research on the influence of hollow cenospheres and perlite to thermal insulation mortar with vitrified beads[J]. Fujian Construction Science & Technology, 2011(6): 36-38.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(7)

    Article Metrics

    Article views (138) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return