| Citation: | KOU Yahao, NI Xiaoxiao, WANG Jianhua, et al.Ultra-high temperature suspension stabilizer HPAS for oil-based drilling and completion fluids and its working mechanism[J]. Drilling Fluid & Completion Fluid,2025, 42(6):728-737 doi: 10.12358/j.issn.1001-5620.2025.06.004 |
| [1] |
孙金声, 蒋官澄, 贺垠博, 等. 油基钻井液面临的技术难题与挑战[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 76-89.
SUN Jinsheng, JIANG Guancheng, HE Yinbo, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 76-89.
|
| [2] |
倪晓骁, 史赫, 程荣超, 等. 油基钻井液用改性锂皂石增黏提切剂[J]. 钻井液与完井液, 2022, 39(2): 133-138.
NI Xiaoxiao, SHI He, CHENG Rongchao, et al. A modified hectorite viscosifier and gelling agent for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(2): 133-138.
|
| [3] |
尹达, 吴晓花, 刘锋报, 等. 抗160℃超高密度柴油基钻井液体系[J]. 钻井液与完井液, 2019, 36(3): 280-286.
YIN Da, WU Xiaohua, LIU Fengbao, et al. An ultra-high density diesel oil base drilling fluid for use at 160℃[J]. Drilling Fluid & Completion Fluid, 2019, 36(3): 280-286.
|
| [4] |
王中华. 国内钻井液技术进展评述[J]. 石油钻探技术, 2019, 47(3): 95-102.
WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3): 95-102.
|
| [5] |
JIANG G C, NI X X, YANG L L, et al. Synthesis of superamphiphobic nanofluid as a multi-functional additive in oil-based drilling fluid, especially the stabilization performance on the water/oil interface[J]. Colloids and Surfaces. a, Physicochemical and Engineering Aspects, 2020, 588: 124385. doi: 10.1016/j.colsurfa.2019.124385
|
| [6] |
王星媛, 陆灯云, 吴正良. 抗220℃高密度油基钻井液的研究与应用[J]. 钻井液与完井液, 2020, 37(5): 550-554,560.
WANG Xingyuan, LU Dengyun, WU Zhengliang. Study and application of a high density oil base drilling fluid with high temperature resistance of 220℃[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 550-554,560.
|
| [7] |
于得水, 汪露, 刘仕银, 等. 顺北16X井二次侧钻超高温钻井液技术[J]. 钻井液与完井液, 2024, 41(1): 53-59.
YU Deishui, WANG Lu, LIU Shiyin, et al. Ultra-high temperature drilling fluid technology for second sidetracking of the well Shunbei-16X[J]. Drilling Fluid & Completion Fluid, 2024, 41(1): 53-59
|
| [8] |
谢涛, 张磊, 杜明亮, 等. 悬浮稳定关键材料及超高温长效稳定油基钻完井液[J]. 钻井液与完井液, 2024, 41(6): 728-735.
XIE Tao, ZHANG Lei, DU Mingliang, et al. Key suspension materials and ultra-high temperature long-term stable oil-based drilling and completion fluids[J]. Drilling Fluid & Completion Fluid, 2024, 41(6): 728-735
|
| [9] |
闫丽丽, 倪晓骁, 张家旗, 等. 纳米材料改善高密度油基钻完井液沉降稳定性的研究及应用[J]. 应用化工, 2023, 52(1): 53-57.
YAN Lili, NI Xiaoxiao, ZHANG Jiaqi, et al. Nanoparticles improved the sedimentation stability of high-density oil-based drilling & completion fluids[J]. Applied Chemical Industry, 2023, 52(1): 53-57.
|
| [10] |
佘运虎. 东海超深大位移井油基钻井液技术[J]. 钻井液与完井液, 2025, 42(3): 296-301.
SHE Yunhu. Oil-based drilling fluid technology for ultra-deep extended reach wells in east China sea[J]. Drilling Fluid & Completion Fluid, 2025, 42(3): 296-301
|
| [11] |
NI X X, SHI H, ZHANG J Q, et al. Modified laponite synthesized with special wettability as a multifunctional additive in oil-based drilling fluids[J]. Journal of Petroleum Science and Engineering, 2023, 220, Part B: 111211.
|
| [12] |
MA C, LI L, YANG Y, et al. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids[C]//2nd International Conference on New Material and Chemical Industry (NMCI2017). Sanya, China: NMCI, 2018: 012106.
|
| [13] |
孙金声, 朱跃成, 白英睿, 等. 改性热固性树脂研究进展及其在钻井液领域应用前景[J]. 中国石油大学学报(自然科学版), 2022, 46(2): 60-75.
SUN Jinsheng, ZHU Yuecheng, BAI Yingrui, et al. Research progress of modified thermosetting resin and its application prospects in field of drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(2): 60-75.
|
| [14] |
吴文兵, 钟杰, 刘涛, 等. 环保型抗超高温海水基低固相钻井液[J]. 钻井液与完井液, 2025, 42(4): 472-477.
WU Wenbing, ZHONG Jie, LIU Tao, et al. An environmentally friendly ultra-high temperature low solids seawater-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2025, 42(4): 472-477
|
| [15] |
王维, 王金堂, 辛江, 等. 海陆过渡相页岩储层液岩作用机理及钻井液体系构建[J]. 钻井液与完井液, 2024, 41(4): 427-436. doi: 10.3969/j.issn.1007-9386.2005.03.007
WANG Wei, WANG Jintang, XIN Jiang, et al. Mechanism of fluid shale interaction and construction of drilling fluid system in marine land transitional shale reservoirs[J]. Drilling Fluid & Completion Fluid, 2024, 41(4): 427-436 doi: 10.3969/j.issn.1007-9386.2005.03.007
|
| [16] |
寇亚浩, 倪晓骁, 黎剑, 等. 有机海泡石在油基钻井液中的应用效果与展望[J]. 应用化工, 2024, 53(9): 2206-2210. doi: 10.3969/j.issn.1671-3206.2024.09.039
KOU Yahao, NI Xiaoxiao, LI Jian, et al. Application effect and prospect of organic sepiolite used in oil-based drilling fluid[J]. Applied Chemical Industry, 2024, 53(9): 2206-2210. doi: 10.3969/j.issn.1671-3206.2024.09.039
|
| [17] |
李静, 雷乾杰, 孟子毅, 等. 微波辅助改性海泡石补强天然橡胶的研究[J]. 橡胶工业, 2023, 70(7): 497-504.
LI Jing, LEI Qianjie, MENG Ziyi, et al. Study on NR reinforced by microwave-assisted modified sepiolite[J]. China Rubber Industry, 2023, 70(7): 497-504.
|
| [18] |
陈静. 黏土科学及应用技术[M]. 北京: 科学出版社, 2017.
CHEN Jing. Clay science and technology applications[M]. Beijing: Science Press, 2017.
|