Volume 42 Issue 5
Sep.  2025
Turn off MathJax
Article Contents
LEI Shaofei, XIAO Chao, SONG Bitao, et al.Thermoplastic thermosensitive adhesive resin lost circulation material (LCM) and its adhension plugging mechanism[J]. Drilling Fluid & Completion Fluid,2025, 42(5):609-616 doi: 10.12358/j.issn.1001-5620.2025.05.006
Citation: LEI Shaofei, XIAO Chao, SONG Bitao, et al.Thermoplastic thermosensitive adhesive resin lost circulation material (LCM) and its adhension plugging mechanism[J]. Drilling Fluid & Completion Fluid,2025, 42(5):609-616 doi: 10.12358/j.issn.1001-5620.2025.05.006

Thermoplastic thermosensitive adhesive resin lost circulation material (LCM) and its adhension plugging mechanism

doi: 10.12358/j.issn.1001-5620.2025.05.006
  • Received Date: 2025-04-06
  • Rev Recd Date: 2025-05-12
  • Publish Date: 2025-09-30
  • Aiming at the problems such as low success rate of plugging and insufficient pressure bearing capacity of plugging layer caused by non-bonding force interaction between particles of conventional bridging materials, this paper developed a thermoplastic thermosensitive bonding resin plugging agent using acrylonitrile-styryl-butadiene copolymer as matrix resin and modified by blending maleic anhydride and petroleum resin. The properties of thermoplastic thermo-adhesive resin were characterized by infrared, thermogravimetric, DMA and high temperature and high pressure plugging instruments. The bonding mechanism of thermoplastic resin was analyzed. The results show that the plugging agent has good bonding and plugging performance at high temperature, and the pressure bearing capacity is as high as 8.2 MPa at 180℃. The thermosensitive adhesive resin is granular at room temperature and semi-molten solid after reaching the activation temperature. After entering the crack, it can self-adhesive plug through molecular chain diffusion and entanglement, so as to realize the thermosensitive, adaptive and efficient plugging function. Under high temperature conditions, thermoplastic resin thermosensitive adhesive resin can effectively improve the success rate of one-time plugging and pressure plugging ability, which provides a new theoretical and technical way to solve the problem of lost circulation during drilling.

     

  • loading
  • [1]
    孙金声, 白英睿, 程荣超, 等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发, 2021, 48(3): 630-638. doi: 10.11698/PED.2021.03.18

    SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3): 630-638. doi: 10.11698/PED.2021.03.18
    [2]
    许成元, 闫霄鹏, 康毅力, 等. 深层裂缝性储集层封堵层结构失稳机理与强化方法[J]. 石油勘探与开发, 2020, 47(2): 399-408. doi: 10.11698/PED.2020.02.19

    XU Chengyuan, YAN Xiaopeng, KANG Yili, et al. Structural failure mechanism and strengthening method of plugging zone in deed naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2): 399-408. doi: 10.11698/PED.2020.02.19
    [3]
    孙金声, 雷少飞, 白英睿, 等. 智能材料在钻井液堵漏领域研究进展和应用展望[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 100-110.

    SUN Jinsheng, LEI Shaofei, BAI Yingrui, et al. Research progress and application prospects of smart materials in lost circulation control of drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(4): 100-110.
    [4]
    孙金声, 雷少飞, 白英睿, 等. 高分子材料的力学状态转变机理及在钻井液领域的应用展望[J]. 石油学报, 2021, 42(10): 1382-1394. doi: 10.7623/syxb202110012

    SUN Jinsheng, LEI Shaofei, BAI Yingrui, et al. Mechanical transformation mechanism of polymer materials and its application prospects in the field of drilling fluids[J]. Acta Petrolei Sinica, 2021, 42(10): 1382-1394. doi: 10.7623/syxb202110012
    [5]
    游利军, 邹俊, 康毅力, 等. 裂缝性致密变质岩气藏钻井液漏失损害机理[J]. 钻井液与完井液, 2024, 41(6): 719-727.

    YOU Lijun, ZOU Jun, KANG Yili, et al. Mechanisms of formation damage by lost drilling fluids in fractured tight metamorphic rock gas reservoirs[J]. Drilling Fluid & Completion Fluid, 2024, 41(6): 719-727
    [6]
    蒲磊, 谢凌志, 徐鹏, 等. 漏失裂缝内封堵层演化规律及颗粒特征行为的可视化实验研究[J]. 钻井液与完井液, 2025, 42(1): 41-50. doi: 10.12358/j.issn.1001-5620.2025.01.004

    PU Lei, XIE Lingzhi, XU Peng, et al. Visual experimental study on evolution and particle’s characteristic behavior of plugging layers inside fractured loss zones[J]. Drilling Fluid & Completion Fluid, 2025, 42(1): 41-50 doi: 10.12358/j.issn.1001-5620.2025.01.004
    [7]
    PANDEY A, TODA A, RASTOGI S. Influence of amorphous component on melting of semicrystalline polymers[J]. Macromolecules, 2011, 44(20): 8042-8055. doi: 10.1021/ma201797k
    [8]
    SZTUCKI M, NARAYANAN T, BELINA G, et al. Kinetic arrest and glass-glass transition in short-ranged attractive colloids[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2006, 74(5 Pt 1): 051504.
    [9]
    HE Y, GOU S H, ZHOU Y T, et al. Thermoresponsive behaviors of novel polyoxyethylene-functionalized acrylamide copolymers: Water solubility, rheological properties and surface activity[J]. Journal of Molecular Liquids, 2020, 319: 114337. doi: 10.1016/j.molliq.2020.114337
    [10]
    BROOKS N W J, MUKHTAR M. Temperature and stem length dependence of the yield stress of polyethylene[J]. Polymer, 2000, 41(4): 1475-1480. doi: 10.1016/S0032-3861(99)00362-6
    [11]
    OLEINIK E F. Plasticity of semicrystalline flexible-chain polymers at the microscopic and mesoscopic levels[J]. Polymer Science Series C, 2003, 45: 17-117.
    [12]
    HUMBERT S, LAME O, VIGIER G. Polyethylene yielding behaviour: What is behind the correlation between yield stress and crystallinity[J]. Polymer, 2009, 50(15): 3755-3761. doi: 10.1016/j.polymer.2009.05.017
    [13]
    PAK J, PYDA M, WUNDERLICH B. Rigid amorphous fractions and glass transitions in poly(oxy-2, 6-dimethyl-1, 4-phenylene)[J]. Macromolecules, 2003, 36(2): 495-499. doi: 10.1021/ma021487u
    [14]
    CANGIALOSI D, ALEGRÍA A, COLMENERO J. Relationship between dynamics and thermodynamics in glass-forming polymers[J]. Europhysics Letters, 2005, 70(5): 614-620. doi: 10.1209/epl/i2005-10029-y
    [15]
    MANIAS E, KUPPA V, YANG D K, et al. Relaxation of polymers in 2 nm slit-pores: confinement induced segmental dynamics and suppression of the glass transition[J]. Colloids and Surfaces. a, Physicochemical and Engineering Aspects, 2001, 187–188: 509-521.
    [16]
    de GENNES P G. Reptation of a polymer chain in the presence of fixed obstacles[J]. Journal of Chemical Physics, 1971, 55(2): 572-579. doi: 10.1063/1.1675789
    [17]
    WATANABE H. Viscoelasticity and dynamics of entangled polymers[J]. Progress in Polymer Science, 1999, 24(9): 1253-1403. doi: 10.1016/S0079-6700(99)00029-5
    [18]
    YANG F, PITCHUMANI R. Healing of thermoplastic polymers at an interface under nonisothermal conditions[J]. Macromolecules, 2002, 35(8): 3213-3224. doi: 10.1021/ma010858o
    [19]
    HARTMANN M, PALZER S. Caking of amorphous powders — Material aspects, modelling and applications[J]. Powder Technology, 2011, 206(1/2): 112-121.
    [20]
    ARGENTO C, JAGOTA A, CARTER W C. Surface formulation for molecular interactions of macroscopic bodies[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(7): 1161-1183. doi: 10.1016/S0022-5096(96)00121-4
    [21]
    JAGOTA A, ARGENTO C, MAZUR S. Growth of adhesive contacts for Maxwell viscoelastic spheres[J]. Journal of Applied Physics, 1998, 83(1): 250-259. doi: 10.1063/1.366679
    [22]
    LIN Y Y, HUI C Y, JAGOTA A. The role of viscoelastic adhesive contact in the sintering of polymeric particles[J]. Journal of Colloid and Interface Science, 2001, 237(2): 267-282. doi: 10.1006/jcis.2001.7470
    [23]
    de GENNES P G. Entangled polymers[J]. Physics Today, 1983, 36(6): 33-39. doi: 10.1063/1.2915700
    [24]
    PRAGER S, TIRRELL M. The healing process at polymer–polymer interfaces[J]. Journal of Chemical Physics, 1981, 75(10): 5194-5198. doi: 10.1063/1.441871
    [25]
    AOKI* Y, TANAKA T K H. Viscoelastic properties of miscible poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends in the molten state[J]. Macromolecules, 1999, 32(25): 8560-8565. doi: 10.1021/ma990281z
    [26]
    WILLIAMS M L, LANDEL R F, FERRY J D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids[J]. Journal of the American Chemical Society, 1955, 77(14): 3701-3707. doi: 10.1021/ja01619a008
    [27]
    HANCOCK B C, ZOGRAFI G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids[J]. Pharmaceutical Research, 1994, 11(4): 471-477. doi: 10.1023/A:1018941810744
    [28]
    KELLEY F N, BUECHE F. Viscosity and glass temperature relations for polymer-diluent systems[J]. Journal of Polymer Science Part A - Polymer Chemistry, 2010, 50(154): 549-556.
    [29]
    WOOL R P, YUAN B L, MCGAREL O J, et al. Welding of polymer interfaces[J]. Polymer Engineering and Science, 1990, 30(22): 1454-1464. doi: 10.1002/pen.760302206
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (120) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return