Volume 42 Issue 5
Sep.  2025
Turn off MathJax
Article Contents
MA Jie, ZHANG Yao, LI Hui, et al.Progresses in researching phase change materials for drilling fluid cooling[J]. Drilling Fluid & Completion Fluid,2025, 42(5):567-574 doi: 10.12358/j.issn.1001-5620.2025.05.001
Citation: MA Jie, ZHANG Yao, LI Hui, et al.Progresses in researching phase change materials for drilling fluid cooling[J]. Drilling Fluid & Completion Fluid,2025, 42(5):567-574 doi: 10.12358/j.issn.1001-5620.2025.05.001

Progresses in Researching Phase Change Materials for Drilling Fluid Cooling

doi: 10.12358/j.issn.1001-5620.2025.05.001
  • Received Date: 2025-03-17
  • Rev Recd Date: 2025-04-21
  • Publish Date: 2025-09-30
  • As wells are drilled deeper and deeper to explore nonconventional oil and gas resources, drilling fluids, downhole tools and detection instrument are experiencing higher formation temperatures, and high efficiency cooling technology is urgently required. The methods of cooling a drilling fluid presently in use include natural cooling and cooling with surface instrument, whose cooling effect is limited. Phase change materials have advantages of high heat storage density and adjustable phase change temperature, hence can be used in a specific well section to achieve temperature response. With phase change materials, precise cooling in a depth near a downhole device such as RSD and LWD can be achieved, and phase change materials are thus becoming the research hotspot in drilling fluid cooling technology. Presently phase change materials though have been widely used in photothermal storage of solar energy, building temperature regulation as well as heat management for electronic devices etc., their use in deep and ultra-deep well drilling and exploration is still in an initial exploration stage. This paper focuses on the classification of phase change materials, the research status of medium and high temperature phase change materials, the properties of phase change materials required for use in drilling fluids, as well as the existing literatures on application studies of drilling fluid cooling. In the future, cost effective phase change materials of high thermal conductivity can be developed through numerical simulation and field test. By strengthening multifunction design of these phase change materials, optimizing their compatibility with drilling fluids, and investigating environmentally friendly, highly efficient, stable and intelligent new phase change materials with multiple functions such as cooling, lubricating and reservoir protection etc., an innovative solution to drilling fluid technology can be developed.

     

  • loading
  • [1]
    佚名. 全球油气储量报告[J]. 油气杂志(OGJ), 2022, 12.

    Anon. Global oil and gas reserves report[J]. Oil and Gas Journal (OGJ), 2022, 12.
    [2]
    张鹏程. 美国《油气杂志》2021年终盘点: 全球石油产量和油气储量[J]. 世界石油工业, 2022, 29(1): 76.

    ZHANG Pengcheng. US oil&gas magazine's 2021 year-end review: global oil production and oil and gas reserves[J]. World Petroleum Industry, 2022, 29(1): 76.
    [3]
    姚宁平, 王毅, 姚亚峰, 等. 我国煤矿井下复杂地质条件下钻探技术与装备进展[J]. 煤田地质与勘探, 2020, 48(2): 1-7. doi: 10.3969/j.issn.1001-1986.2020.02.001

    YAO Ningping, WANG Yi, YAO Yafeng, et al. Progress of drilling technologies and equipments for complicated geological conditions in underground coal mines in China[J]. Coal Geology & Exploration, 2020, 48(2): 1-7. doi: 10.3969/j.issn.1001-1986.2020.02.001
    [4]
    张运东, 方辉, 刘帅奇, 等. 深地油气勘探开发技术发展现状与趋势[J]. 世界石业, 2023, 30(6): 12-20.

    ZHANG Yundong, FANG Hui, LIU Shuaiqi, et al. Current status and trends of deep oil and gas exploration and development technologies[J]. World Petroleum Industry, 2023, 30(6): 12-20.
    [5]
    马青芳. 钻井液冷却技术及装备综述[J]. 石油机械, 2016, 44(10): 42-46.

    MA Qingfang. Discussion on drilling fluid cooling technology and equipment[J]. China Petroleum Machinery, 2016, 44(10): 42-46.
    [6]
    崔海亭, 杨峰. 储热技术及其应用[M]. 北京: 化学工业出版社, 2004.

    CUI Haiting, YANG Feng. Thermal energy storage technology and its application[M]. Beijing: Chemical Industry Press, 2004.
    [7]
    王鑫, 方建华, 刘坪, 等. 相变材料的研究进展[J]. 功能材料, 2019, 50(2): 70-75. doi: 10.3969/j.issn.1001-9731.2019.02.011

    WANG Xin, FANG Jianhua, LIU Ping, et al. Research progress of phase change materials[J]. Journal of Functional Materials, 2019, 50(2): 70-75. doi: 10.3969/j.issn.1001-9731.2019.02.011
    [8]
    杜洪韬. 深水钻井井筒热效应研究[D]. 荆州: 长江大学, 2018.

    DU Hongtao. Research on thermal effect of deepwater drilling wellbore[D]. Jingzhou: Yangtze University, 2018.
    [9]
    易灿, 闫振来, 郭磊. 井下循环温度及其影响因素的数值模拟研究[J]. 石油钻探技术, 2007, 35(6): 47-49. doi: 10.3969/j.issn.1001-0890.2007.06.013

    YI Can, YAN Zhenlai, GUO Lei. Numerical simulation of circulating temperature and it's impacting parameters[J]. Petroleum Drilling Techniques, 2007, 35(6): 47-49. doi: 10.3969/j.issn.1001-0890.2007.06.013
    [10]
    司西强, 王中华. 钻井液用磺化胺基烷基糖苷高效润滑剂的研制及性能[J]. 应用化工, 2022, 51(8): 2323-2326. doi: 10.3969/j.issn.1671-3206.2022.08.030

    SI Xiqiang, WANG Zhonghua. Preparation and properties of sulfonated amino alkyl polyglucoside used as high efficiency lubricant in drilling fluids[J]. Applied Chemical Industry, 2022, 51(8): 2323-2326. doi: 10.3969/j.issn.1671-3206.2022.08.030
    [11]
    苏俊霖, 蒲晓林, 任茂, 等. 抗高温无机/有机复合纳米降滤失剂室内研究[J]. 断块油气田, 2012, 19(5): 626-628. doi: 10.6056/dkyqt201205020

    SU Junlin, PU Xiaolin, REN Mao, et al. Research on inorganic/organic composite-nano fluid loss additive resistant to high temperature[J]. Fault-Block Oil and Gas Field, 2012, 19(5): 626-628. doi: 10.6056/dkyqt201205020
    [12]
    徐晓明. 动力电池热管理技术——散热系统热流场分析[M]. 北京: 机械工业出版社, 2018.

    XU Xiaoming. Power battery thermal management technology: thermal flow field analysis of cooling system[M]. Beijing: China Machine Press, 2018.
    [13]
    折晓会, 王星宇, 郭晓龙, 等. 超低温-高温跨温区相变材料制备及物性调控综述[J]. 储能科学与技术, 2023, 12(12): 3818-3835.

    SHE Xiaohui, WANG Xingyu, GUO Xiaolong, et al. A review on the preparation of ultra-low-temperature, high-temperature, and cross-temperature zone phase change materials and the regulation of physical properties[J]. Energy Storage Science and Technology, 2023, 12(12): 3818-3835.
    [14]
    SAHER S, JOHNSTON S, ESTHER-KELVIN R, et al. Trimodal thermal energy storage material for renewable energy applications[J]. Nature, 2024, 636(8043): 622-626. doi: 10.1038/s41586-024-08214-1
    [15]
    卢尧, 吴学航. 钠离子电池镍锰基正极材料的界面改性研究[J]. 广西大学学报(自然科学版), 2023, 48(5): 1258-1273.

    LU Yao, WU Xuehang. Interfacial modification of nickel-manganese based cathode materials for sodium-ion batteries[J]. Journal of Guangxi University (Natural Science Edition), 2023, 48(5): 1258-1273.
    [16]
    赫娜, 冯国会, 王天雨. 基于PCM的太阳能储能水箱研究进展[J]. 工程科学学报, 2023, 45(10): 1795-1806.

    HE Na, FENG Guohui, WANG Tianyu. Research progress on solar energy storage water tanks based on phase-change materials[J]. Chinese Journal of Engineering, 2023, 45(10): 1795-1806.
    [17]
    李晓杰, 罗清海, 李光辉, 等. 太阳能相变蓄热炕的实验及数值模拟研究[J]. 南华大学学报(自然科学版), 2024, 38(1): 10-20,45.

    LI Xiaojie, LUO Qinghai, LI Guanghui, et al. Experimental and numerical simulation research on solar phase change heat storage Kang[J]. Journal of University of Souht China (Science & Technology), 2024, 38(1): 10-20,45.
    [18]
    LUO R R, LEI H, SHAO F L, et al. Graphene-pentaerythritol solid–solid phase change composites with high photothermal conversion and thermal conductivity[J]. Solar Energy, 2022, 241: 54-62. doi: 10.1016/j.solener.2022.05.053
    [19]
    WANG K C, ZHANG T Y, WANG T Y, et al. Microencapsulation of high temperature metallic phase change materials with SiCN shell[J]. Chemical Engineering Journal, 2022, 436: 135054. doi: 10.1016/j.cej.2022.135054
    [20]
    JIANG Y, WANG Q, TIAN S S, et al. Fluoride microcapsules with high phase change temperature[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653: 130028. doi: 10.1016/j.colsurfa.2022.130028
    [21]
    龙伟月. 脂肪酸相变单元熔化过程传热特性研究及结构优化[D]. 成都: 西南交通大学, 2017.

    LONG Weiyue. Research on heat transfer characteristics and structural optimization of the melting process of fatty acid phase change units[D]. Chengdu: Southwest Jiaotong University, 2017.
    [22]
    满凯. 复合相变材料在建筑混凝土中的应用分析[J]. 新材料新装饰, 2024, 6(16): 18-20.

    MAN Kai. Analysis of the application of composite phase change materials in building concrete[J]. New Material New Decoration, 2024, 6(16): 18-20.
    [23]
    刘均一, 陈二丁, 李光泉, 等. 基于相变蓄热原理的深井钻井液降温实验研究[J]. 石油钻探技术, 2021, 49(1): 53-58. doi: 10.11911/syztjs.2020131

    LIU Junyi, CHEN Erding, LI Guangquan, et al. Experimental study of drilling fluid cooling in deep wells based on phase change heat storage[J]. Petroleum Drilling Techniques, 2021, 49(1): 53-58. doi: 10.11911/syztjs.2020131
    [24]
    YU A P, RAMESH P, ITKIS M E, et al. Graphite nanoplatelet−epoxy composite thermal interface materials[J]. Journal of Physical Chemistry C, 2007, 111(21): 7565-7569. doi: 10.1021/jp071761s
    [25]
    王成文, 熊超, 陈泽华, 等. 高温钻井液主动降温用耐高温高压微球制备方法及其应用: CN, 115491183A[P]. 2022-09-22.

    WANG Chengwen, XIONG Chao, CHEN Zehua, et al. Preparation method and application of high-temperature and high-pressure microspheres for active cooling of high-temperature drilling fluid: CN, 115491183A[P]. 2022-09-22.
    [26]
    孙金声, 章超, 黄贤斌, 等. 一种超深层钻井液用双壳层高导热相变储热微胶囊及其制备方法与应用: CN119193120A[P]. 2024-09-20.

    SUN Jinsheng, ZHANG Chao, HUANG Xianbin, et al. A bi-shell high-thermal conductivity phase change heat storage microcapsule for ultra-deep drilling fluid and preparation method and application: CN119193120A[P]. 2024-09-20.
    [27]
    GUO P F, QIU Z S, ZHANG Y B, et al. Preparation and characterization of phase change microcapsules for improving the applicable temperature and stability of high temperature resistant drilling fluids[J]. Chemical Engineering Research and Design, 2024, 201: 389-398. doi: 10.1016/j.cherd.2023.11.054
    [28]
    李美春, 李子燕, 孙金声, 等. 一种钻井液降温用相变胶囊及其制备方法与应用: CN117701255A[P]. 2024-02-06.

    LI Meichun, LI Ziyan, SUN Jinsheng, et al. A phase change capsule for cooling drilling fluid and its preparation method and application: CN117701255A[P]. 2024-02-06.
    [29]
    KANG J X, WANG H H, ZOU C J, et al. Supramolecular porous phase change materials for encapsulation of nitrate with amino-expanded graphite by cucurbit[7]uril[J]. Journal of Cleaner Production, 2024, 474: 143632. doi: 10.1016/j.jclepro.2024.143632
    [30]
    ZHANG Q, LI Y F, WANG Y, et al. Synthesis of size-controllable Erythritol@TiO2 phase change microcapsules and application in cooling of High-temperature drilling fluids[J]. Journal of Energy Storage, 2025, 112: 115294. doi: 10.1016/j.est.2025.115294
    [31]
    ZHANG H R, SU Y N, LIAO M L, et al. Thermal management of drilling fluids with phase change materials in ultra-high temperature wells[J]. Applied Thermal Engineering, 2025, 274, Part A: 126601.
    [32]
    赵立强, 张楠林, 张以明, 等. 自支撑相变压裂技术室内研究与现场应用[J]. 天然气工业, 2020, 40(11): 60-67.

    ZHAO Liqiang, ZHANG Nanlin, ZHANG Yiming, et al. Laboratory study and field application of self-propping phase-transition fracturing technology[J]. Natural Gas Industry, 2020, 40(11): 60-67.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (118) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return