Citation: | GUO Liang, XU Hang, LIU Kaiyong, et al.Method of predicting drilling fluid rheology based on generative adversarial networks in digital twin environment[J]. Drilling Fluid & Completion Fluid,2025, 42(3):359-367 doi: 10.12358/j.issn.1001-5620.2025.03.012 |
[1] |
CHEN L. Optimization design of drilling fluid chemical formula based on artificial intelligence[J]. Computational Intelligence and Neuroscience, 2022, 2022:5465816.
|
[2] |
ROOKI R. Application of general regression neural network (GRNN) for indirect measuring pressure loss of Herschel-Bulkley drilling fluids in oil drilling[J]. Measurement, 2016, 85:184-191. doi: 10.1016/j.measurement.2016.02.037
|
[3] |
ABDELAAL A, IBRAHIM A, ELKATATNY S. Rheological properties prediction of flat rheology drilling fluids[C]//Paper presented at the 56th U. S. Rock Mechanics/Geomechanics Symposium. Santa Fe, New Mexico, USA, 2022: ARMA-2022-0822.
|
[4] |
GAUTAM S, GURIA C, GOPE L. Prediction of high-pressure/high-temperature rheological properties of drilling fluids from the viscosity data measured on a coaxial cylinder viscometer[J]. SPE Journal, 2021, 26(5):2527-2548. doi: 10.2118/206714-PA
|
[5] |
FAN H, ZHOU H, MENG X, et al. Accurate prediction model for rheological properties of drilling fluids at high temperature and high pressure conditions[C]//Paper presented at the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Nusa Dua, Bali, Indonesia, 2015: SPE-176263-MS.
|
[6] |
GOLSEFATAN A, SHAHBAZI K. Predicting performance of SiO2 nanoparticles on filtration volume using reliable approaches: application in water-based drilling fluids[J]. Energy Sources Part A: Recovery Utilization and Environmental Effects, 2021, 43(23):3216-3225. doi: 10.1080/15567036.2019.1639854
|
[7] |
ELKATATNY S, TARIQ Z, MAHMOUD M. Real time prediction of drilling fluid rheological properties using Artificial Neural Networks visible mathematical model (white box)[J]. Journal of Petroleum Science and Engineering, 2016, 146:1202-1210. doi: 10.1016/j.petrol.2016.08.021
|
[8] |
周号博. 基于黏度计读值预测的高温高压流变性预测方法[J]. 钻井液与完井液,2019,36(3):325-332. doi: 10.3969/j.issn.1001-5620.2019.03.011
ZHOU Haobo. A method of predicting high temperature high pressure rheological property based on viscometer readings[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):325-332. doi: 10.3969/j.issn.1001-5620.2019.03.011
|
[9] |
刘保双, 王忠杰, 马云谦, 等. 钻井液流变性在线检测新方法[J]. 钻井液与完井液,2016,33(4):56-59.
LIU Baoshuang, WANG Zhongjie, MA Yunqian, et al. New method of online measurement of drilling fluid rheology[J]. Drilling Fluid & Completion Fluid, 2016, 33(4):56-59.
|
[10] |
YANG C, WANG Z H, ZHENG L H, et al. Predicting equivalent static density of fuzzy ball drilling fluid by BP artificial neutral network[J]. Advances in Materials Science and Engineering, 2015, 2015(1):340721.
|
[11] |
TOMIWA O, OLUWATOSIN R, TEMILOLUWA O, et al.Improved water based mud using solanum tuberosum formulated biopolymer and application of artificial neural network in predicting mud rheological properties [C]//Paper presented at the SPE Nigeria Annual International Conference and Exhibition. Lagos, Nigeria, 2019: SPE-198861-MS.
|
[12] |
ZHANG D, DUAN L C, XU Y, et al. An ANN-based soft-sensor to estimate the sand content of drilling fluid[C]//2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Beijing, China, 2022: 1598-1602.
|
[13] |
陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):1-18.
TAO Fei, LIU Weiran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1):1-18.
|
[14] |
KANFAR R, HALABI L E, HALL T, et al. Well placement optimization for avoiding caves using GANs and POMDPs[C]//Paper presented at the International Petroleum Technology Conference. Dhahran, Saudi Arabia, 2024: IPTC-24209-MS.
|
[15] |
SHARIFINASAB M H, EMAMI NIRI M, MASROOR M. Developing GAN-boosted Artificial Neural Networks to model the rate of drilling bit penetration[J]. Applied Soft Computing, 2023, 136:110067. doi: 10.1016/j.asoc.2023.110067
|
[16] |
AKHTAR M S, ALI A, CHAUDHURI S S. Mobile-UNet GAN: a single-image dehazing model[J]. Signal Image and Video Processing, 2024, 18(1):275-283. doi: 10.1007/s11760-023-02752-3
|
[17] |
SIDDIG O M, ELKATATNY S. Utilizing drilling data and machine learning in Real-Time prediction of poisson's ratio[C]//Paper presented at the Middle East Oil, Gas and Geosciences Show. Manama, Bahrain, 2023: SPE-213694-MS.
|