Citation: | ZHAO Xionghu, WANG Can, XIAO Zhe, et al.Research progress in preparation of nanocellulose and its application in drilling fluids[J]. Drilling Fluid & Completion Fluid,2025, 42(1):20-29 doi: 10.12358/j.issn.1001-5620.2025.01.002 |
[1] |
袁玥辉, 屈沅治, 高世峰, 等. 抗温抗盐水基钻井液降滤失剂研究进展[J]. 新疆石油天然气,2023,19(2):62-68. doi: 10.12388/j.issn.1673-2677.2023.02.008
YUAN Yuehui, QU Yuanzhi, GAO Shifeng, et al. Advances in study on temperature-resistant and salt-tolerant fluid loss reducers for water-based drilling fluids[J]. Xinjiang Oil & Gas, 2023, 19(2):62-68. doi: 10.12388/j.issn.1673-2677.2023.02.008
|
[2] |
HALL L J, DEVILLE J P, SANTOS C M, et al. Nanocellulose and biopolymer blends for high-performance water-based drilling fluids[C]//The IADC/SPE Drilling Conference and Exhibition. Fort Worth, Texas, USA: SPE, 2018: SPE-189577-MS.
|
[3] |
HALL L J, DEVILLE J P, ARAUJO C S, et al. Nanocellulose and its derivatives for high-performance water-based fluids[C]//SPE International Conference on Oilfield Chemistry. Montgomery, Texas, USA: SPE, 2017: SPE-184576-MS.
|
[4] |
许凯瑞, 宫庆华, 周国伟. 纳米纤维素的分类制备及其在电化学应用中的研究进展[J]. 高分子通报,2020(10):12-20.
XU Kairui, GONG Qinghua, ZHOU Guowei. Progress on preparation of nanocelluloses and its applications in electrochemistry[J]. Chinese Polymer Bulletin, 2020(10):12-20.
|
[5] |
AHVAZI B, DANUMAH C, NGO T D, et al. The impact of fiber oxidation on the preparation of cellulose nanocrystals(CNC)[J]. Biomass, 2022, 2(4):316-333. doi: 10.3390/biomass2040021
|
[6] |
ZHANG Y X, NYPELÖ T, SALAS C, et al. Cellulose nanofibrils: from strong materials to bioactive surfaces[J]. Journal of Renewable Materials, 2013, 1(3):195-211. doi: 10.7569/JRM.2013.634115
|
[7] |
DENG W F, ZHANG Y D, WU M Y, et al. Cost-effective preparation of highly amorphous cellulose nanofibrils with TEMPO oxidation promoted by mild molten salt hydrate pretreatment[J]. Industrial Crops and Products, 2023, 205:117455. doi: 10.1016/j.indcrop.2023.117455
|
[8] |
王增义. 稻草纤维素纳米纤维及其复合材料薄膜的制备与性能研究[D]. 上海: 上海交通大学, 2019.
WANG Zengyi. Preparation and properties of straw cellulose nanofibers and their composite films[D]. Shanghai: Shanghai Jiao Tong University, 2019.
|
[9] |
RYLAND B L, STAHL S S. Practical aerobic oxidations of alcohols and amines with homogeneous Copper/TEMPO and related catalyst systems[J]. Angewandte Chemie (International ed. in English), 2014, 53(34):8824-8838. doi: 10.1002/anie.201403110
|
[10] |
GANDINI A, LACERDA T M, CARVALHO A J F, et al. Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides[J]. Chemical Reviews, 2016, 116(3):1637-1669. doi: 10.1021/acs.chemrev.5b00264
|
[11] |
DE NOOY A E J. BESEMER A C, VAN BEKKUM H. Highly selective nitrosyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans[J]. Carbohydrate Research, 1995, 269(1):89-98. doi: 10.1016/0008-6215(94)00343-E
|
[12] |
HABIBI Y, CHANZY H, VIGNON M R. TEMPO-mediated surface oxidation of cellulose whiskers[J]. Cellulose, 2006, 13(6):679-687. doi: 10.1007/s10570-006-9075-y
|
[13] |
PUANGSIN B, YANG Q L, SAITO T, et al. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources[J]. International Journal of Biological Macromolecules, 2013, 59:208-213. doi: 10.1016/j.ijbiomac.2013.04.016
|
[14] |
WANG J, LIU X, JIN T, et al. Preparation of nanocellulose and its potential in reinforced composites: a review[J]. Journal of Biomaterials Science Polymer Edition, 2019, 30(11):919-946. doi: 10.1080/09205063.2019.1612726
|
[15] |
SAEMAN J F. Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature[J]. Industrial & Engineering Chemistry, 1945, 37(1):43-52.
|
[16] |
庄新姝, 王树荣, 骆仲泱, 等. 纤维素低浓度酸水解试验及产物分析研究[J]. 太阳能学报,2006,27(5):519-524. doi: 10.3321/j.issn:0254-0096.2006.05.020
ZHUANG Xinshu, WANG Shurong, LUO Zhongyang, et al. Experimental research and products analysis of cellulose hydrolysis under extremely low acids[J]. Acta Energiae Solaris Sinica, 2006, 27(5):519-524. doi: 10.3321/j.issn:0254-0096.2006.05.020
|
[17] |
马海珠, 周天文, 薛国新, 等. 超低浓度酸水解制备纤维素纳米纤丝的初步研究[J]. 中国造纸,2020,39(1):17-25. doi: 10.11980/j.issn.0254-508X.2020.01.003
MA Haizhu, ZHOU Tianwen, XUE Guoxin, et al. Preparation of cellulose nanofibrils by ultra-low acid hydrolysis[J]. China Pulp & Paper, 2020, 39(1):17-25. doi: 10.11980/j.issn.0254-508X.2020.01.003
|
[18] |
张燕, 左盼盼, 王超君, 等. 纳米纤维素的最新制备研究Ⅱ. 机械法[J]. 纤维素科学与技术,2020,28(4):56-62.
ZHANG Yan, ZUO Panpan, WANG Chaojun, et al. Recent preparation research of Nano-CelluloseⅡ. mechanical method[J]. Journal of Cellulose Science and Technology, 2020, 28(4):56-62.
|
[19] |
HETTRICH K, PINNOW M, VOLKERT B, et al. Novel aspects of nanocellulose[J]. Cellulose, 2014, 21(4):2479-2488. doi: 10.1007/s10570-014-0265-8
|
[20] |
JIANG F, HSIEH Y L. Chemically and mechanically isolated nanocellulose and their self-assembled structures[J]. Carbohydrate Polymers, 2013, 95(1):32-40. doi: 10.1016/j.carbpol.2013.02.022
|
[21] |
BASU A, HEITZ K, STRØMME M, et al. Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: candidate materials for advanced wound care applications[J]. Carbohydrate Polymers, 2018, 181:345-350. doi: 10.1016/j.carbpol.2017.10.085
|
[22] |
王宝霞. 花生壳纤维素纳米纤丝及其复合材料的制备与性能研究[D]. 南京: 南京林业大学, 2018.
WANG Baoxia. Preparation and properties of peanut shell cellulose nanofibrils and their composites[D]. Nanjing: Nanjing Forestry University, 2018.
|
[23] |
张燕, 张铭涛, 沈晓飞, 等. 纳米纤维素的最新制备进展Ⅰ. 化学法[J]. 纤维素科学与技术,2020,28(3):49-58.
ZHANG Yan, ZHANG Mingtao, SHEN Xiaofei, et al. Recent progress of preparation of nano-cellulose Ⅰ. the chemical methods[J]. Journal of Cellulose Science and Technology, 2020, 28(3):49-58.
|
[24] |
MANDAL A, CHAKRABARTY D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization[J]. Carbohydrate Polymers, 2011, 86(3):1291-1299. doi: 10.1016/j.carbpol.2011.06.030
|
[25] |
赵鑫, 张红, 门中华, 等. 纤维素酶的研究与应用进展[J]. 化学与生物工程,2023,40(9):1-9. doi: 10.3969/j.issn.1672-5425.2023.09.001
ZHAO Xin, ZHANG Hong, MEN Zhonghua, et al. Research and application progress in cellulase[J]. Chemistry & Bioengineering, 2023, 40(9):1-9. doi: 10.3969/j.issn.1672-5425.2023.09.001
|
[26] |
曹媛. 纳米纤维素酶法制备及酶系优化的研究[D]. 济南: 山东大学, 2018.
CAO Yuan. Title: Study on enzymatie preparaton of nanccellulose and optimization of enzymatic system [D]. Jinan: Shandong University, 2018.
|
[27] |
JUÁREZ-LUNA G N, FAVELA-TORRES E, QUEVEDO I R, et al. Enzymatically assisted isolation of high-quality cellulose nanoparticles from water hyacinth stems[J]. Carbohydrate Polymers, 2019, 220:110-117. doi: 10.1016/j.carbpol.2019.05.058
|
[28] |
李兆乾, 裴重华, 彭碧辉. 细菌纤维素的研究现状及进展[J]. 纤维素科学与技术,2007,15(2):64-68. doi: 10.3969/j.issn.1004-8405.2007.02.014
LI Zhaoqian, PEI Chonghua, PENG Bihui. Current situation and development for bacterial cellulose[J]. Journal of Cellulose Science and Technology, 2007, 15(2):64-68. doi: 10.3969/j.issn.1004-8405.2007.02.014
|
[29] |
孙振炳, 李晓宝, 姚曜, 等. 细菌纤维素抗菌复合材料的制备和应用[J]. 包装工程,2021,42(13):21-28.
SUN Zhenbing, LI Xiaobao, YAO Yao, et al. Preparation and application of bacterial cellulose antibacterial composite material[J]. Packaging Engineering, 2021, 42(13):21-28.
|
[30] |
周毓, 刘艳. 细菌纤维素研究进展[J]. 广州化工,2007,35(2):8-9. doi: 10.3969/j.issn.1001-9677.2007.02.005
ZHOU Yu, LIU Yan. Advance in bacterial cellulose[J]. Guangzhou Chemical Industry, 2007, 35(2):8-9. doi: 10.3969/j.issn.1001-9677.2007.02.005
|
[31] |
GATENHOLM P, KLEMM D. Bacterial nanocellulose as a renewable material for biomedical applications[J]. MRS Bulletin, 2010, 35(3):208-213. doi: 10.1557/mrs2010.653
|
[32] |
TAOKAEW S, SEETABHAWANG S, SIRIPONG P, et al. Biosynthesis and characterization of nanocellulose-gelatin films[J]. Materials, 2013, 6(3):782-794. doi: 10.3390/ma6030782
|
[33] |
GUO D L, YUAN T Z, SUN Q Y, et al. Cellulose nanofibrils as rheology modifier and fluid loss additive in water-based drilling fluids: rheological properties, rheological modeling, and filtration mechanisms[J]. Industrial Crops and Products, 2023, 193:116253. doi: 10.1016/j.indcrop.2023.116253
|
[34] |
VILLADA Y, IGLESIAS M C, CASIS N, et al. Cellulose nanofibrils as a replacement for xanthan gum(XGD) in water based muds(WBMs) to be used in shale formations[J]. Cellulose, 2018, 25(12):7091-7112. doi: 10.1007/s10570-018-2081-z
|
[35] |
LIU C Z, LI M C, MEI C T, et al. Cellulose nanofibers from rapidly microwave-delignified energy cane bagasse and their application in drilling fluids as rheology and filtration modifiers[J]. Industrial Crops and Products, 2020, 150:112378. doi: 10.1016/j.indcrop.2020.112378
|
[36] |
SONG K L, WU Q L, LI M C, et al. Water-based bentonite drilling fluids modified by novel biopolymer for minimizing fluid loss and formation damage[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2016, 507:58-66.
|
[37] |
HEGGSET E B, CHINGA-CARRASCO G, SYVERUD K. Temperature stability of nanocellulose dispersions[J]. Carbohydrate Polymers, 2017, 157:114-121. doi: 10.1016/j.carbpol.2016.09.077
|
[38] |
LI M C, REN S X, ZHANG X Q, et al. Surface-chemistry-tuned cellulose nanocrystals in a bentonite suspension for water-based drilling fluids[J]. ACS Applied Nano Materials, 2018, 1(12):7039-7051. doi: 10.1021/acsanm.8b01830
|
[39] |
DEVILLE J P, RADY A, ZHOU H. Nanocellulose as a new degradable suspension additive for high-density calcium brines[C]//SPE International Conference and Exhibition on Formation Damage Control. Lafayette, Louisiana, USA: SPE, 2020: SPE-199318-MS.
|
[40] |
IBRAHIM K, NZEREM P, SALIHU A, et al. Performance evaluation of nanocellulose synthesised from yam peels as a fluid loss additive in water based mud[C]//SPE Nigeria Annual International Conference and Exhibition. Lagos, Nigeria: SPE, 2023: SPE-217162-MS.
|
[41] |
程晓燕. 聚阴离子纤维素与纳米纤维素的协同降滤失效果研究[D]. 北京: 北京理工大学, 2018.
CHENG Xiaoyan. Study on the synergistic fluid loss reduction effect of polyanionic cellulose and nanocellulose[D]. Beijing: Beijing Institute of Technology, 2018.
|
[42] |
侯式禄. 适用于高性能水基钻井液的纳米纤维素和生物聚合物研究[J]. 当代化工,2023,52(2):267-272. doi: 10.3969/j.issn.1671-0460.2023.02.004
HOU Shilu. Studyon nanocellulose and biopolymers for high performance water-based drilling fluids[J]. Contemporary Chemical Industry, 2023, 52(2):267-272. doi: 10.3969/j.issn.1671-0460.2023.02.004
|
[43] |
DEVILLE J P, MAY P A, MILLER J J. Nanoparticle fluid loss control additive enables zero-spurt loss in high performance water-based drilling fluids[C]//IADC/SPE International Drilling Conference and Exhibition. Galveston, Texas, USA: SPE, 2022: SPE-208695-MS.
|
[44] |
LI M C, WU Q, SONG K, et al. Cellulose nanocrystals and polyanionic cellulose as additives in bentonite Water-Based drilling fluids: rheological modeling and filtration mechanisms[J]. Industrial & Engineering Chemistry Research, 2016, 55(1):133-143.
|
[45] |
张道明. 纳米纤维素的研制及其在钻井液中的应用研究[D]. 青岛: 中国石油大学(华东), 2017.
ZHANG Daoming. Development and application research of nanocellulose Used in drillingfluid[D]. Qingdao: China University of Petroleum(East China), 2017.
|
[46] |
SABOORI R, SABBAGHI S, KALANTARIASL A, et al. Improvement in filtration properties of water-based drilling fluid by nanocarboxymethyl cellulose/polystyrene core-shell nanocomposite[J]. Journal of Petroleum Exploration and Production Technology, 2018, 8(2):445-454. doi: 10.1007/s13202-018-0432-9
|
[47] |
LIU X L, QU J L, WANG A, et al. Hydrogels prepared from cellulose nanofibrils via ferric ion-mediated crosslinking reaction for protecting drilling fluid[J]. Carbohydrate Polymers, 2019, 212:67-74. doi: 10.1016/j.carbpol.2019.02.036
|
[48] |
HALL L J, DEVILLE J P, SANTOS C M, et al. Nanocellulose and biopolymer blends for high-performance water-based drilling fluids[C]//IADC/SPE Drilling Conference and Exhibition. Fort Worth, Texas, USA: SPE, 2018: SPE-189577-MS.
|
[49] |
LI X, WANG K, XIAN L. et al. Carboxylated cellulose nanocrystals as environmental-friendly and multi-functional additives for bentonite water-based drilling fluids under high-temperature conditions[J]. Cellulose, 2021, 29:6659-6675.
|
[50] |
王伟吉. 抗温环保纳米纤维素降滤失剂的研制及特性[J]. 钻井液与完井液,2020,37(4):421-426. doi: 10.3969/j.issn.1001-5620.2020.04.003
WANG Weiji. Development and characteristics of a high temperature environmentally friendly nanocellulose filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):421-426. doi: 10.3969/j.issn.1001-5620.2020.04.003
|