Citation: | BAI Jiajia, GU Tianshuai, TAO Lei, et al.Application and prospect of deep eutectic solvent inhibition in shale hydration[J]. Drilling Fluid & Completion Fluid,2024, 41(2):141-147 doi: 10.12358/j.issn.1001-5620.2024.02.001 |
[1] |
罗东辉,赵凯,艾武昌,等. 一种实用油基钻井液冲洗效果评价方法及应用[J]. 当代化工,2019,48(12):2869-2871, 2895.
LUO Donghui, ZHAO Kai, AI Wuchang, et al. A practical method for evaluating flushing effect of oil-based drilling fluids and its application[J]. Contemporary Chemical Industry, 2019, 48(12):2869-2871, 2895.
|
[2] |
白海鹏,陈辉,刘学清,等. 低密度钻井液体系的种类及特点[J]. 石化技术,2020,27(8):112-113,111. doi: 10.3969/j.issn.1006-0235.2020.08.060
BAI Haipeng, CHEN Hui, LIU Xueqing, et al. Types and characteristics of low density drilling fluid systems[J]. Petrochemical Industry Technology, 2020, 27(8):112-113,111. doi: 10.3969/j.issn.1006-0235.2020.08.060
|
[3] |
BAI J J, FENG X, CHEN Z W, et al. Investigation of the mechanism and effect of citric acid-based deep eutectic solvents inhibiting hydration and expansion of gas shale clay minerals[J]. Energy & Fuels, 2023, 37(4):2750-2758.
|
[4] |
HUANG J, GUO X Y, XU T Y, et al. Ionic deep eutectic solvents for the extraction and separation of natural products[J]. Journal of Chromatography. a, 2019, 1598:1-19. doi: 10.1016/j.chroma.2019.03.046
|
[5] |
HANSEN B B, SPITTLE S, CHEN B, et al. Deep eutectic solvents: a review of fundamentals and applications[J]. Chemical Reviews, 2021, 121(3):1232-1285. doi: 10.1021/acs.chemrev.0c00385
|
[6] |
JIA H, HUANG P, WANG Q X, et al. Investigation of inhibition mechanism of three deep eutectic solvents as potential shale inhibitors in water-based drilling fluids[J]. Fuel, 2019, 244:403-411. doi: 10.1016/j.fuel.2019.02.018
|
[7] |
YANG D Z, WANG Y D, PENG J B, et al. A green deep eutectic solvents microextraction coupled with acid-base induction for extraction of trace phenolic compounds in large volume water samples[J]. Ecotoxicology and Environmental Safety, 2019, 178:130-136. doi: 10.1016/j.ecoenv.2019.04.021
|
[8] |
KUDDUSHI M, NANGALA G S, RAJPUT S, et al. Understanding the peculiar effect of water on the physicochemical properties of choline chloride based deep eutectic solvents theoretically and experimentally[J]. Journal of Molecular Liquids, 2019, 278:607-615. doi: 10.1016/j.molliq.2019.01.053
|
[9] |
CAO Y Y, MU T C. Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis[J]. Industrial & Engineering Chemistry Research, 2014, 53(20):8651-8664.
|
[10] |
JABLONSKY M, SKULCOVA A, HAZ A, et al. Long-term isothermal stability of deep eutectic solvents[J]. BioResources, 2018, 13(4):7545-7559.
|
[11] |
ABBOTT A P, HARRIS R C, RYDER K S, et al. Glycerol eutectics as sustainable solvent systems[J]. Green Chemistry, 2011, 13(1):82-90. doi: 10.1039/C0GC00395F
|
[12] |
MUHAMMED N S, OLAYIWOLA T, ELKATATNY S, et al. Insights into the application of surfactants and nanomaterials as shale inhibitors for water-based drilling fluid: A review[J]. Journal of Natural Gas Science and Engineering, 2021, 92:103987. doi: 10.1016/j.jngse.2021.103987
|
[13] |
HAMMAD RASOOL M, AHMAD M, AYOUB M, et al. A review of the usage of deep eutectic solvents as shale inhibitors in drilling mud[J]. Journal of Molecular Liquids, 2022, 361:119673. doi: 10.1016/j.molliq.2022.119673
|
[14] |
BOUL P J, REDDY B R, ZHANG J L, et al. Functionalized nanosilicas as shale inhibitors in Water-Based drilling fluids[J]. SPE Drilling & Completion, 2017, 32(2):121-130.
|
[15] |
SALEH T A. Advanced trends of shale inhibitors for enhanced properties of water-based drilling fluid[J]. Upstream Oil and Gas Technology, 2022, 8:100069. doi: 10.1016/j.upstre.2022.100069
|
[16] |
CAO H, ZHANG Z, BAO T, et al. Experimental investigation of the effects of drilling fluid activity on the hydration behavior of shale reservoirs in northwestern Hunan, China[J]. Energies, 2019, 12(16):3151. doi: 10.3390/en12163151
|
[17] |
SHAFIE M H, YUSOF R, GAN C Y. Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties[J]. Journal of Molecular Liquids, 2019, 288:111081. doi: 10.1016/j.molliq.2019.111081
|
[18] |
HIRPARA D, PATEL B, CHAVDA V, et al. Micellization and clouding behaviour of an ionic surfactant in a deep eutectic solvent: a case of the reline-water mixture[J]. Journal of Molecular Liquids, 2022, 364:119991. doi: 10.1016/j.molliq.2022.119991
|
[19] |
白佳佳,司双虎,陶磊,等. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏,2024,36(1):169-177. doi: 10.12108/yxyqc.20240116
BAI Jiajia, SI Shuanghu, TAO Lei, et al. Mechanism of DES+CTAB compound oil displacement agent system to improve oil recovery in low-permeability tight sandstone reservoirs[J]. Lithologic Reservoirs, 2024, 36(1):169-177. doi: 10.12108/yxyqc.20240116
|
[20] |
RASOOL M H, ZAMIR A, ELRAIES K A, et al. A deep eutectic solvent based novel drilling mud with modified rheology for hydrates inhibition in deep water drilling[J]. Journal of Petroleum Science and Engineering, 2022, 211:110151. doi: 10.1016/j.petrol.2022.110151
|
[21] |
MA J Y, PANG S C, ZHOU W, et al. Novel deep eutectic solvents for stabilizing clay and inhibiting shale hydration[J]. Energy & Fuels, 2021, 35(9):7833-7843.
|
[22] |
LEI M, HUANG W A, SUN J S, et al. Synthesis of carboxymethyl chitosan as an eco-friendly amphoteric shale inhibitor in water-based drilling fluid and an assessment of its inhibition mechanism[J]. Applied Clay Science, 2020, 193:105637. doi: 10.1016/j.clay.2020.105637
|
[23] |
SULTANA K, RAHMAN M T, HABIB K, et al. Recent advances in deep eutectic solvents as shale swelling inhibitors: a comprehensive review[J]. ACS Omega, 2022, 7(33):28723-28755. doi: 10.1021/acsomega.2c03008
|
[24] |
JIA H, HUANG P, HAN Y G, et al. Investigation for the novel use of a typical deep eutectic solvent as a potential shale inhibitor[J]. Energy Sources Part A:Recovery Utilization and Environmental Effects, 2022, 44(1):1402-1415. doi: 10.1080/15567036.2019.1643953
|
[25] |
FARAG R M, SALEM A M, EL-MIDANY A A, et al. Bentonite Suspension Filtration and its Electro-Kinetics in the Presence of Additives[J]. Tenside Surfactants Detergents, 2021, 58(2):121-126. doi: 10.1515/tsd-2020-2257
|
[26] |
ZHONG H Y, QIU Z S, ZHANG D M, et al. Inhibiting shale hydration and dispersion with amine-terminated polyamidoamine dendrimers[J]. Journal of Natural Gas Science and Engineering, 2016, 28:52-60. doi: 10.1016/j.jngse.2015.11.029
|
[27] |
SMITH P S, BROWNE S V, HEINZ T J, et al. Drilling fluid design to prevent formation damage in high permeability quartz arenite sandstones[C]//SPE Annual Technical Conference and Exhibition. Denver: SPE: SPE-36430-MS.
|
[28] |
RITA N, KHALID I, EFRAS M R. Rheological properties of drilling mud consist of cmc which is made by carton waste and chemical additive of Na2CO3 for reducing lost circulation[J]. IOP Conference Series. Materials Science and Engineering, 2020, 884:012027. doi: 10.1088/1757-899X/884/1/012027
|
[29] |
AL-MALKI N, POURAFSHARY P, AL-HADRAMI H, et al. Controlling bentonite-based drilling mud properties using sepiolite nanoparticles[J]. Petroleum Exploration and Development, 2016, 43(4):717-723. doi: 10.1016/S1876-3804(16)30084-2
|
[30] |
LIU Q, SANTAMARINA J C. Mudcake growth: model and implications[J]. Journal of Petroleum Science and Engineering, 2018, 162:251-259. doi: 10.1016/j.petrol.2017.12.044
|
[31] |
MOHSENZADEH A, AL-WAHAIBI Y, AL-HAJRI R, et al. Effects of concentration, salinity and injection scenario of Ionic liquids analogue in heavy oil recovery enhancement[J]. Journal of Petroleum Science and Engineering, 2015, 133:114-122. doi: 10.1016/j.petrol.2015.04.036
|
[32] |
BEG M, KESARWANI H, SHARMA S, et al. Impact of low-molecular-weight poly(4-styrenesulfonic acid-co-maleic acid) sodium salt on filtration and rheological parameters of nanoparticles-enhanced drilling fluid[J]. Journal of Vinyl and Additive Technology, 2022, 28(1):125-139. doi: 10.1002/vnl.21873
|