Volume 40 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
XING Linzhuang, YUAN Yuehui, YE Cheng, et al.Synthesis and evaluation of a high temperature salt-resistant chain polymer filter loss reducer[J]. Drilling Fluid & Completion Fluid,2023, 40(6):703-710 doi: 10.12358/j.issn.1001-5620.2023.06.002
Citation: XING Linzhuang, YUAN Yuehui, YE Cheng, et al.Synthesis and evaluation of a high temperature salt-resistant chain polymer filter loss reducer[J]. Drilling Fluid & Completion Fluid,2023, 40(6):703-710 doi: 10.12358/j.issn.1001-5620.2023.06.002

Synthesis and Evaluation of a High Temperature Salt-Resistant Chain Polymer Filter Loss Reducer

doi: 10.12358/j.issn.1001-5620.2023.06.002
  • Received Date: 2023-06-14
  • Rev Recd Date: 2023-07-28
  • Publish Date: 2023-12-30
  • A branched polymer filter loss reducer PAANDA has been developed to deal with the problems of poor high-temperature stability and poor salt resistance encountered in deep well drilling. Monomers used for the synthesis include acrylamide (AM), 2-acrylamide-2-methyl propane sulfonic acid (AMPS), N-vinyl caprolactam (NVCL), dimethyl diallyl ammonium chloride (DMDAAC) and allyl alcohol polyoxyethylene ether (APEG). Potassium persulphate and sodium bisulphite was used as a redox system for the radical polymerization reaction. Laboratory experiment was conducted to determine the optimum ratio of the raw reaction materials and optimum reaction conditions ad follows:n (AM)∶ n (AMPS)∶ n (NVCL)∶ n (DMDAAC)∶ n (APEG) = 50 : 20 : 5 : 10 : 15, reaction temperature = 50 °C, reaction time = 4 hours, concentration of the initiator = 0.3%. Using FTIR and 1H-NMR, the molecular structure of the polymerization product was determined. TGA analysis showed that the PAANDA filter loss reducer degrades at above 300 °C, indicating that the product has excellent thermal stability. The filtration control property of PAANDA was evaluated in water-based drilling fluids. It was found that at a water-based drilling fluid treated with 2.0% PAANDA has API filter loss of 4.0 mL and HTHP filter loss of 22.6 mL tested at 180 °C after aging the fluid at 180 °C. The PAANDA also performed better than Driscal D in resisting contamination from compound salts and calcium.

     

  • loading
  • [1]
    何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议[J]. 石油钻探技术,2022,50(5):1-8.

    HE Licheng, TANG Bo. The up to date technologies of ultra-deep well drilling in Junggar basin and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(5):1-8.
    [2]
    伍贤柱. 川渝气田深井和超深井钻井技术[J]. 天然气工业,2008(4):9-13.

    WU Xianzhu. Drilling technology in deep and ultradeep gas wells in the Sichuan and Chongqing gas fields[J]. Natural Gas Industry, 2008(4):9-13.
    [3]
    苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527-542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologiesfor onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5):527-542.
    [4]
    刘磊,范伟东,陈红举,等. 塔河油田超深超稠油地热保温开采技术[J]. 新疆石油天然气,2022,18(2):92-97.

    LIU Lei, FAN Weidong, CHEN Hongju, et al. Geothermal-insulating production technology for ultra-deep and ultra-heavy oil in Tahe oilfield[J]. Xinjiang Oil & Gas, 2022, 18(2):92-97.
    [5]
    魏昱,白龙,王骁男. 川深1井钻井液关键技术[J]. 钻井液与完井液,2019(36):194-201.

    WEI Yu, BAI Long, WANG Xiaonan. Key drilling fluid technology for well Chuanshen-1[J]. Drilling Fluid & Completion Fluid, 2019(36):194-201.
    [6]
    刘四海,蔡利山. 深井超深井钻探工艺技术[J]. 钻井液与完井液,2002(6):121-126.

    LIU Sihai, CAI Lishan. Deep and ultra deep well drilling technology[J]. Drilling Fluid & Completion Fluid, 2002(6):121-126.
    [7]
    黄治中,杨玉良,马世昌,等. 抗220 ℃高温水基钻井液技术研究[J]. 新疆石油天然气,2009,5(3):52-55.

    HUANG Zhizhong, YANG Yuliang, MA Shichang,et al. Study on water-based drilling fluids resisting high temperature[J]. Xinjiang Oil & Gas, 2009, 5(3):52-55.
    [8]
    陈德军,雒和敏,铁成军,等. 钻井液降滤失剂研究述论[J]. 油田化学,2013,30(2):295-300.

    CHEN Dejun, LUO Hemin, TIE Chengjun, et al. Summary of fluid loss additive used for drilling fluid[J]. Oilfield Chemistry, 2013, 30(2):295-300.
    [9]
    高伟, 李银婷, 余福春, 等. 抗超高温水基钻井液用聚合物降滤失剂的研制[J]. 钻井液与完井液, 2021, 38(2): 146-151.

    GAO Wei, LI Yinting, YU Fuchun, et al. Development of polymer filter loss reducer for ultra-high temperature water base drilling fluids [J] Drilling Fluid & Completion Fluid, 2021, 38 (2): 146-151.
    [10]
    全红平, 张拓森, 黄志宇, 等. 抗高温耐盐钻井液降滤失剂的合成与评价[J]. 应用化工, 2022, 51(6): 1691-1696.

    QUAN Hongping, ZHANG Tusen, HUANG Zhiyu, et al. Synthesis and evaluation of high-temperature and salt resistant fluid loss reducer [J] Applied Chemical Industry, 2022, 51 (6): 1691-1696.
    [11]
    常晓峰, 孙金声, 吕开河,等. 一种新型抗高温降滤失剂的研究和应用[J]. 钻井液与完井液, 2019, 36(4): 420-426.

    CHANG Xiaofeng, SUN Jinsheng, LYU Kaihe, et al. Research and application of a novel high temperature filter loss reducer [J] Drilling Fluid & Completion Fluid, 2019, 36 (4): 420-426.
    [12]
    胡正文,任庭飞,邓小刚,等. 聚合物降滤失剂PAAAA的合成及其性能评价[J]. 石油化工,2020,49(4):378-384.

    HU Wenwen, REN Tingfei, DENG Xiaogang, et al. Synthesis and property evaluation of polymer fluid loss additive PAAAA[J]. Petrochemical Technology, 2020, 49(4):378-384.
    [13]
    张凤英,杨光,刘延彪,等. 高温高盐油藏用化学驱油剂的研究[J]. 精细石油化工进展,2005,6(5):8-12.

    ZHANG Fengying, YANG Guang, LIU Yanbiao, et al. Development of chemical oil displacement agent for high temperature and high salinity reservoir[J]. Advances in Fine Petrochemicals, 2005, 6(5):8-12.
    [14]
    孙振平,黄雄荣. 烯丙基聚乙二醇系聚羧酸类减水剂的研究[J]. 建筑材料学报,2009,12(4):407-412.

    SUN Zhenping, HUANG Xiongrong. Study on allyl polyethylene glycol based polycarboxylate superplasticizer[J]. Journal of Building Materials, 2009, 12(4):407-412.
    [15]
    全红平,明显森,黄志宇,等. 聚氧乙烯基型降滤失剂SJ-1的合成与性能评价[J]. 精细化工,2013,30(5):570-574.

    QUAN Hongping, MING Xiansen, HUANG Zhiyu, et al. Synthesis and evaluation of fluid loss additive SJ-1 for polyoxyethylene type[J]. Fine Chemicals, 2013, 30(5):570-574.
    [16]
    刘鹭. 水基钻井液抗高温温度保护剂和降失水剂研究[D]. 西南石油大学, 2014.

    LIU Lu. Research on high temperature resistant temperature protector and fluid loss reducer for water-based drilling fluid [D]. Southwest Petroleum University, 2014.
    [17]
    张太亮,刘婉琴,李亮. 四元共聚钻井液降滤失剂的合成与性能评价[J]. 精细化工,2014,31(10):1269-1274.

    ZHANG Tailiang, LIU Wanqin, LI Liang. Synthesis and performance evaluation of quardripolymer fluid loss additive[J]. Fine Chemicals, 2014, 31(10):1269-1274.
    [18]
    杨小敏,睢文云,郑伟. 聚醚醇钻井液在花X39井的应用[J]. 新疆石油天然气,2020,16(3):38-41.

    YANG Xiaomin, SUI Wenyun, ZHENG Wei. Application of polyether alcohol drilling fluid in Hua X39 well[J]. Xinjiang Oil & Gas, 2020, 16(3):38-41.
    [19]
    杨丽丽,刘瀚卿,敖天,等. 分散聚合法制备聚丙烯酰胺降滤失剂的研究[J]. 钻井液与完井液,2022,39(2):158-163.

    YANG Lili, LIU Hanqing, AO Tian, et al. Study and application of dispersion polymerization in preparing PAM filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):158-163.
    [20]
    张高波,李培海,乔汉,等. 控制水基钻井液高温高压滤失量的方法及途径[J]. 钻井液与完井液,2022,39(4):406-414.

    ZHANG Gaobo, LI Peihai, QIAO Han, et al. Methods of controlling low HTHP filtration rate of water based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):406-414.
    [21]
    ASSEM Y, CHAFFEY M H , BARNER K C, et al . Controlled/living ring-closing cyclopolymerization of diallyldimethy lammonium chloride via the reversible addition fragmentation chain transfer process[J]. Macromolecules, 2007, 40(11), 3907-3913.
    [22]
    郑海洪,李建波,罗庆英,等. 钻井液用两性离子聚合物降滤失剂的研究[J]. 天然气勘探与开发,2009,32(3):59-62.

    ZHENG Haihong, LI Jianbo, LUO Qingying, et al. Flitrate reducer of zwitterionic polymer for drilling fluid[J]. Natural Gas Exploration and Development, 2009, 32(3):59-62.
    [23]
    徐运波,蓝强,张斌,等. 梳型聚合物降滤失剂的合成及其在深井盐水钻井液中的应用[J]. 钻井液与完井液,2017,34(1):33-38.

    XU Yunbo, LAN Qiang, ZHANG Bin, et al. Synthesis and application of a comb polymer filter loss reducer in deep well saltwater drilling fluid[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):33-38.
    [24]
    杨以霞. 聚氧乙烯醚梳型聚合物的合成及其对蒙脱土分散体系稳定性的影响[D]. 山东大学, 2015.

    YANG Yixia. Synthesis of polyoxyethylene ether comb-like copolymer and its effect on the stability of montmorillonite dispersion[D]. Shandong University, 2015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Article Metrics

    Article views (269) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return