LI Wenzhe, FU Zhi, ZHANG Zhen, et al.Study and application of an oil-based gel fluid for sealing induced micro-fractures[J]. Drilling Fluid & Completion Fluid,2023, 40(4):446-452, 461 doi: 10.12358/j.issn.1001-5620.2023.04.005
Citation: LI Wenzhe, FU Zhi, ZHANG Zhen, et al.Study and application of an oil-based gel fluid for sealing induced micro-fractures[J]. Drilling Fluid & Completion Fluid,2023, 40(4):446-452, 461 doi: 10.12358/j.issn.1001-5620.2023.04.005

Study and Application of an Oil-based Gel Fluid for Sealing Induced Micro-fractures

doi: 10.12358/j.issn.1001-5620.2023.04.005
  • Received Date: 2023-01-07
  • Rev Recd Date: 2023-02-24
  • Publish Date: 2023-07-30
  • The Longmaxi formation in the Changning block (Sichuan Oilfield) is drilled with oil-based drilling fluids. This formation is developed with microfractures and hence mud losses have frequently happened in the past. Mud losses have been controlled with bridging particles formulated in oil-based slurries, which has been proved unsuccessful and time consuming. To deal with this problem, a compound oil-based gel has been developed with animal fats, vegetable oils and epoxy resin. This oil-based gel can invade into the fractures in the formation rocks to seal them off, thereby increasing the success rate of mud loss control. Considering the practicability of field application, the compressive strength, thickening time and performance against contamination from oil-based muds of this gel were evaluated in laboratory test, and its ability to combat mud losses was also evaluated. The laboratory test results have shown that the gel has compressive strength of 5.1 MPa, and the gelling time can be controlled at more than 3 hours, which is enough to perform field operation safely. Oil-based drilling fluids have only a very slight effect on the gel strength of the gel and do not cause the thickening time of the gel to shorten. All properties of the oil-based gel indicate that it is suitable for use in controlling mud losses through microfractures in hole sections drilled with oil-based drilling fluids.

     

  • [1]
    张馨艺. 长宁地区五峰组-龙马溪组页岩气地质特征研究[D]. 成都: 西南石油大学, 2018.

    ZHANG Xinyi. Study on geological characteristics of shale gas in Wufeng formation-Longmaxi formation in Changning area[D]. Chengdu: Southwest Petroleum University, 2018.
    [2]
    翟晓鹏,鞠鹏飞,谢志涛,等. 页岩诱导性裂缝漏失压力动力学模型[J]. 钻井工程,2018,38(3):81-86.

    ZHAI Xiaopeng, JU Pengfei, XIE Zhitao, et al. A dynamic model for the leakage pressure of induced fractures in shale reservoirs[J]. Drilling Engineering, 2018, 38(3):81-86.
    [3]
    王中华. 聚合物凝胶堵漏剂的研究与应用进展[J]. 精细与专用化学品,2011,19(4):16-20. doi: 10.3969/j.issn.1008-1100.2011.04.003

    WANG Zhonghua. Research and application progress of polymer gel plugging agent[J]. Fine and Specialty Chemicals, 2011, 19(4):16-20. doi: 10.3969/j.issn.1008-1100.2011.04.003
    [4]
    曹晓春,李倍任,秦义,等. 聚合物凝胶堵漏剂的研究及应用[J]. 当代化工,2015,44(11):2572-2574,2577. doi: 10.3969/j.issn.1671-0460.2015.11.024

    CAO Xiaochun, LI Beiren, QIN Yi, et al. Research and application of polymer gel plugging agent[J]. Contemporary Chemical Industry, 2015, 44(11):2572-2574,2577. doi: 10.3969/j.issn.1671-0460.2015.11.024
    [5]
    孙金声,雷少飞,白英睿,等. 智能材料在钻井液堵漏领域研究进展和应用展望[J]. 中国石油大学学报(自然科学版),2020,44(4):100-110.

    SUN Jinsheng, LEI Shaofei, BAI Yinrui, et al. Research progress and application prospects of smart materials in lost circulation control of drilling fluids[J]. Journal of China University of Petroleum( Edition of Natural Science), 2020, 44(4):100-110.
    [6]
    WANG H, SWEATMAN R, ENGELMAN B, et al. The key to successfully applying today's lost circulation solutions[C]//SPE Annual Technical Conference and Exhibition. Dallas, Texas: SPE, 2005: SPE-95895-MS.
    [7]
    HUGHES N E, MARANGONI A G, WRIGHT A J, et al. Potential food applications of edible oil organogels[J]. Trends in Food Science & Technology, 2009, 20(10):470-480. doi: 10.1016/j.jpgs.2009.06.002
    [8]
    李文博,李公让. 可控化聚合物凝胶堵漏材料的研究进展[J]. 钻井液与完井液,2021,38(2):133-141.

    LI Wenbo, LI Gongrang. Research progress of controllable polymer gel lost circulation materials[J]. Drilling Fluid & Completion Fluid, 2021, 38(2):133-141.
    [9]
    郭新建,于培志. 抗高温化学凝胶堵漏技术在顺北 52X 井的应用[J]. 钻井液与完井液,2019,36(2):189-193. doi: 10.3969/j.issn.1001-5620.2019.02.010

    GUO Xinjian, YU Peizhi. Controlling mud losses in well Shunbei 52X with high temperature chemical gels[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):189-193. doi: 10.3969/j.issn.1001-5620.2019.02.010
    [10]
    李辉,刘华康,何仲,等. 塔河油田碳酸盐岩储层恶性漏失空间堵漏凝胶技术[J]. 钻井液与完井液,2019,36(1):25-28.

    LI Hui, LIU Huakang, HE Zhong, et al. Use gel to control severe mud losses in carbonate reservoir formations in Tahe oilfield[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):25-28.
    [11]
    于欣,张振,郭梦扬,等. 抗高温油基钻井液堵漏剂的研制与应用: 以龙马溪组页岩气井 W204H 为例[J]. 断块油气田,2021,28(2):168-172.

    YU Xin, ZHANG Zhen, GUO Mengyang, et al. Development and application of high temperature resistant oil-based drilling fluid plugging agent: taking shale gas well W204H of Longmaxi Formation as an example[J]. Fault-Block Oil & Gas Field, 2021, 28(2):168-172.
    [12]
    李红梅,申峰,吴金桥,等. 新型油基钻井液堵漏剂性能[J]. 钻井液与完井液,2016,33(2):41-44.

    LI Hongmei, SHEN Feng, WU Jinjiao, et al. Study on performance of a new oil base mud lost circulation material[J]. Drilling Fluid & Completion Fluid, 2016, 33(2):41-44.
    [13]
    纪卫军,杨勇,闫永生,等. 一种油基钻井液用凝胶堵漏体系及其应用[J]. 钻井液与完井液,2021,38(2):196-200. doi: 10.3969/j.issn.1001-5620.2021.02.011

    JI Weijun, YANG Yong, YAN Yongsheng, et al. Gel plugging system for oil-based drilling fluid and its application[J]. Drilling Fluid & Completion Fluid, 2021, 38(2):196-200. doi: 10.3969/j.issn.1001-5620.2021.02.011
    [14]
    潘永功,许明标,李路. 地沟油用作钻井堵漏浆的体系研究[J]. 当代化工,2018,47(12):2491-2493,2506. doi: 10.3969/j.issn.1671-0460.2018.12.002

    PAN Yonggong, XU Mingbiao, LI Lu. Study on the drilling plugging slurry system prepared from swill-cooked dirty oil[J]. Contemporary Chemical Industry, 2018, 47(12):2491-2493,2506. doi: 10.3969/j.issn.1671-0460.2018.12.002
    [15]
    王兰兰,赵燕. 高强度水凝胶的研究现状[J]. 化学推进剂与高分子材料,2014,12(2):36-40,45. doi: 10.16572/j.issn1672-2191.2014.02.001

    WANG Lanlan, ZHAO Yan. Research status of high-strength hydrogels[J]. Chemical Propellants & Polymeric Materials, 2014, 12(2):36-40,45. doi: 10.16572/j.issn1672-2191.2014.02.001
    [16]
    黄晓兵,张熙,代华,杨万庆. PVA/P(AA-AM)复合水凝胶的制备及性能[J]. 高分子材料科学与工程,2008,24(6):30-33. doi: 10.16865/j.cnki.1000-7555.2008.06.008

    HUANG Xiaobin, ZHANG Xi, DAI Hua, et al. Synthesis and properties of PVA/P (AA-AM) composite hydrogel[J]. Polymer Materials Science & Engineering, 2008, 24(6):30-33. doi: 10.16865/j.cnki.1000-7555.2008.06.008
    [17]
    WANG J H, GAO C, ZHANG Y S, et al. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial[J]. Materials Science and Engineering: C, 2010, 30(1):214-218. doi: 10.1016/j.msec.2009.10.006
  • Relative Articles

  • Cited by

    Periodical cited type(2)

    1. 王家钦,杨燕洁,赵诚,刘尚豪,暴丹,张鹏. 温控液-固相变堵漏体系的研制及原位自生堵漏技术. 钻井液与完井液. 2024(05): 582-588 . 本站查看
    2. 夏海英,杨丽,陈智晖. 钻井液用自适应堵漏材料的研制. 钻井液与完井液. 2024(06): 742-746 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.5 %FULLTEXT: 25.5 %META: 66.0 %META: 66.0 %PDF: 8.5 %PDF: 8.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.2 %其他: 4.2 %其他: 0.9 %其他: 0.9 %China: 0.3 %China: 0.3 %United States: 0.1 %United States: 0.1 %[]: 0.1 %[]: 0.1 %上海: 24.7 %上海: 24.7 %东营: 0.6 %东营: 0.6 %临汾: 0.1 %临汾: 0.1 %乐山: 0.1 %乐山: 0.1 %伊犁: 0.1 %伊犁: 0.1 %保定: 0.1 %保定: 0.1 %克拉玛依: 0.3 %克拉玛依: 0.3 %北京: 3.7 %北京: 3.7 %南京: 0.2 %南京: 0.2 %南充: 0.1 %南充: 0.1 %南昌: 0.1 %南昌: 0.1 %卡拉季: 0.3 %卡拉季: 0.3 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈密: 0.1 %哈密: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %喀什: 0.3 %喀什: 0.3 %坎帕拉: 0.1 %坎帕拉: 0.1 %大同: 0.1 %大同: 0.1 %天津: 0.5 %天津: 0.5 %太原: 0.2 %太原: 0.2 %巴音郭楞: 1.0 %巴音郭楞: 1.0 %常德: 0.2 %常德: 0.2 %延安: 0.2 %延安: 0.2 %张家口: 3.3 %张家口: 3.3 %成都: 0.9 %成都: 0.9 %新乡: 0.2 %新乡: 0.2 %日喀则: 0.1 %日喀则: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.2 %晋城: 0.2 %杭州: 0.1 %杭州: 0.1 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %滨州: 0.1 %滨州: 0.1 %濮阳: 0.2 %濮阳: 0.2 %焦作: 0.4 %焦作: 0.4 %盘锦: 0.4 %盘锦: 0.4 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 12.6 %芒廷维尤: 12.6 %芝加哥: 0.1 %芝加哥: 0.1 %荆州: 0.1 %荆州: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 12.6 %西宁: 12.6 %西安: 0.8 %西安: 0.8 %许昌: 0.1 %许昌: 0.1 %诺沃克: 10.4 %诺沃克: 10.4 %贵阳: 1.0 %贵阳: 1.0 %费利蒙: 0.2 %费利蒙: 0.2 %运城: 1.2 %运城: 1.2 %遵义: 0.2 %遵义: 0.2 %郑州: 0.2 %郑州: 0.2 %重庆: 0.3 %重庆: 0.3 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %防城港: 0.1 %防城港: 0.1 %青岛: 0.2 %青岛: 0.2 %驻马店: 14.4 %驻马店: 14.4 %其他其他ChinaUnited States[]上海东营临汾乐山伊犁保定克拉玛依北京南京南充南昌卡拉季呼和浩特哈密哥伦布喀什坎帕拉大同天津太原巴音郭楞常德延安张家口成都新乡日喀则昆明晋城杭州武汉沈阳洛阳滨州濮阳焦作盘锦石家庄秦皇岛芒廷维尤芝加哥荆州衢州西宁西安许昌诺沃克贵阳费利蒙运城遵义郑州重庆长沙长治防城港青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (673) PDF downloads(114) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return