Volume 40 Issue 3
May  2023
Turn off MathJax
Article Contents
REN Qiang, LIU Ningze, LUO Wenli, et al.Study on a foam lightweight cement slurry and the distribution of its micro pores[J]. Drilling Fluid & Completion Fluid,2023, 40(3):376-383 doi: 10.12358/j.issn.1001-5620.2023.03.014
Citation: REN Qiang, LIU Ningze, LUO Wenli, et al.Study on a foam lightweight cement slurry and the distribution of its micro pores[J]. Drilling Fluid & Completion Fluid,2023, 40(3):376-383 doi: 10.12358/j.issn.1001-5620.2023.03.014

Study on a Foam Lightweight Cement Slurry and the Distribution of Its Micro Pores

doi: 10.12358/j.issn.1001-5620.2023.03.014
  • Received Date: 2022-12-17
  • Rev Recd Date: 2023-02-06
  • Available Online: 2023-07-21
  • Publish Date: 2023-05-30
  • Foam lightweight cement slurry is very important to the safety of downhole operation in low-pressure easy-to-leak formation drilling. A high temperature high efficiency foaming agent FPJ-S has been developed to formulate lightweight cement slurries. FPJ-S is prepared from the hydrophilic tetradecanedioic acid methyl ester, the hydrophobic N,N-dimethyl-1,3-diamino propane and a rigid linking monomer 2,2’-dibromobiphenyl. A high temperature foam stabilizer, WPJ-S, was developed with the FPJ-S, a viscosifying foam stabilizer and a synergistic foam stabilizer. A foam lightweight cement slurry was formulated with WPJ-S and experiments were conducted to study the foaming capacity of the FPJ-S and the WPJ-S, as well as the distribution of pores in the set foam cement. The study results show that compared with conventional foaming agents, the foaming capacity of the FPJ-S is increased by 40%, the 1-hour settling distance is reduced by 58.8%. The foam stabilizing capacity and temperature tolerance of the WPJ-S is superior to the conventional foam stabilizers. The density of the foam lightweight cement slurry formulated can be adjusted between 0.90 g/cm3 and 1.6 g/cm3. The cement slurry has good settlement stabilization, and the 24-hour compressive strengths of the cement slurries of different densities are all greater than 3 MPa. Technical characterization based on mercury intrusion method and industry CT (XCT) shows that the foam lightweight cement slurry has pores that are uniformly distributed inside the set cement, and the set cement has regular morphology, and no large number of connecting holes are found in the set cement.

     

  • loading
  • [1]
    刘慧婷,付家文,丛谧,等. 高强度低密度水泥石的微观结构和力学性能[J]. 硅酸盐通报,2020,39(11):3432-3437.

    LIU Huiting, FU Jiawen, CONG Mi, et al. Microstructure and mechanical properties of high-strength low-density cement paste[J]. Silicate Bulletin, 2020, 39(11):3432-3437.
    [2]
    杨海波,曹成章,冯德杰,等. 新型低密度水泥减轻材料SXJ-1的研制及应用[J]. 石油钻探技术,2017,45(4):59-64.

    YANG Haibo, CAO Chengzhang, FENG Dejie, et al. Development and application of new low-density cement reducing material SXJ-1[J]. Petroleum Drilling Techniques, 2017, 45(4):59-64.
    [3]
    顾军,向阳,何湘清,等. 泡沫超低密度油井水泥的试验研究[J]. 水泥,2002(6):19-20.

    GU Jun, XIANG Yang, HE Xiangqing, et al. Experimental study on foam ultra-low density oil well cement[J]. Cement, 2002(6):19-20.
    [4]
    吴天乾,宋文宇,谭凌方,等. 超低密度水泥固井质量评价方法[J]. 石油钻探技术,2022,50(1):65-70.

    WU Tianqian, SONG Wenyu, TAN Lingfang, et al. Evaluation method for cementing quality of ultra-low-density cement[J]. Petroleum Drilling Techniques, 2022, 50(1):65-70.
    [5]
    陈芳,毛素梅. 固井工艺技术中对泡沫水泥的应用[J]. 石化技术,2016,23(3):186.

    CHEN Fang, MAO Sumei. Application of foam cement in cementing technology[J]. Petrochemical Technology, 2016, 23(3):186.
    [6]
    杨昆鹏,项忠华,黄鸣宇,等. 低成本超低密度水泥浆体系研究与应用[J]. 钻井液与完井液,2018,35(4):92-96.

    YANG Kunpeng,XIANG Zhonghua,HUANG Mingyu,et al. Study and application of a low cost ultra-low density cement slurry[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):92-96.
    [7]
    卓兴家,秦宇. 高温高压泡沫水泥环完整性研究[J]. 当代化工,2016,45(6):1188-1190.

    ZHUO Xingjia, QIN Yu. Study on integrity of high-temperature and high-pressure foam cement sheath[J]. Contemporary Chemical Industry, 2016, 45(6):1188-1190.
    [8]
    谭慧静,周丹,陈德南,等. 用于高温地热井泡沫水泥泡沫剂性能研究[J]. 地质与勘探,2015,51(6):1181-1186.

    TAN Huijing, ZHOU Dan, CHEN Denan, et al. Study on the performance of foam cement foam agent used in high-temperature geothermal wells[J]. Geology and Exploration, 2015, 51(6):1181-1186.
    [9]
    YANG Y, ZHOU Q, DENG Y, et al. Reinforcement effects of multi-scale hybrid fiber on flexural and fracture behaviors of ultra-low-weight foamed cement-based composites[J]. Cement and Concrete Composites, 2022, 128:104422.
    [10]
    DU Z, ZUO W, WANG P, et al. Ultralight, super thermal insulation, and fire-resistant cellular cement fabricated with Janus nanoparticle stabilized ultra-stable aqueous foam[J]. Cement and Concrete Research, 2022(162):106994.
    [11]
    HOU L, LI J, LU Z, et al. Influence of foaming agent on cement and foam concrete[J]. Construction and Building Materials, 2021, 280:122399.
    [12]
    BAI Y, XIE B, LI H, et al. Mechanical properties and electromagnetic absorption characteristics of foam Cement-based absorbing materials[J]. Construction and Building Materials, 2022, 330:127221.
    [13]
    JC/T 2199—2013, 泡沫混凝土用泡沫剂[S]. 北京, 2013.

    JC/T 2199—2013, Foam agent for foam concrete [S]. Beijing, 2013.
    [14]
    GB/T 7462—1994, 表面活性剂发泡力的测定-改进Ross-Miles法[S]. 北京, 1994.

    GB/T 7462—1994, Determination of foaming power of surfactants - Modified Ross-Miles method [S]. Beijing, 1994.
    [15]
    GB/T 39533—2020, 常压下泡沫水泥浆的制备及实验方法[S]. 北京, 2020.

    GB/T 39533—2020, Preparation and experimental method of foam cement slurry at atmospheric pressure [S]. Beijing, 2020.
    [16]
    王险峰,孙培培,邢锋,等. 微胶囊自修复水泥基材料的微观结构研究[J]. 防灾减灾工程学报,2016,36(1):126-131.

    WANG Xianfeng, SUN Peipei, XING Feng, et al. Study on the microstructure of microencapsulated self-repairing cement-based materials[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(1):126-131.
    [17]
    郑冠一,郭小阳,李早元,等. 基于分形理论的高温固井水泥浆体系设计及评价[J]. 硅酸盐通报,2020,39(6):1742-1750.

    ZHENG Guanyi, GUO Xiaoyang, LI Zaoyuan, et al. Design and evaluation of high-temperature cementing slurry system based on fractal theory[J]. Silicate Bulletin, 2020, 39(6):1742-1750.
    [18]
    高嵩,李秋义,李楠,等. 基于最紧密堆积理论超密实再生砂浆制备研究[J]. 建筑结构学报,2021,42(S1):466-472.

    GAO Song, LI Qiuyi, LI Nan, et al. Study on preparation of ultra-dense recycled mortar based on the tightest packing theory[J]. Journal of Building Structures, 2021, 42(S1):466-472.
    [19]
    韩家伟,严辰成,胡五龙,等. 盐冻条件下不同水灰比硬化水泥砂浆的孔隙演化及表征[J]. 硅酸盐学报,2020,48(11):1842-1851.

    HAN Jiawei, YAN Chencheng, HU Wulong, et al. Pore evolution and characterization of hardened cement mortar with different water cement ratios under salt freezing conditions[J]. Journal of Silicate, 2020, 48(11):1842-1851.
    [20]
    徐义洪,范颖芳. 氧化石墨烯水泥净浆的力学性能与微观结构的分形特征[J]. 混凝土,2020(8):130-134.

    XU Yihong, FAN Yingfang. Fractal characteristics of mechanical properties and microstructure of graphene oxide cement paste[J]. Concrete, 2020(8):130-134.
    [21]
    王鼎, 万向臣, 杨晨. 低摩阻耐压防漏低密度水泥浆固井技术 [J]. 钻井液与完井液, 2022, 39(5): 608-614.

    WANG Ding, WAN Xiangchen, YANG Chen.Well cementing with low friction pressure resistant leaking preventive low density cement slurry[J]. Drilling Fluid & Completion Fluid, 2022, 39(5): 608-614.
    [22]
    韦庭丛,程小伟,王升正,等. 漂珠低密度水泥石的孔体积分形维数及其与孔结构和力学性能的关系[J]. 材料导报,2016,30(S2):415-419.

    WEI Tingcong, CHENG Xiaowei, WANG Shengzheng, et al. The pore integral shape dimension of floating bead low density cement paste and its relationship with pore structure and mechanical properties[J]. Material Guide, 2016, 30(S2):415-419.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(7)

    Article Metrics

    Article views (673) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return