Volume 40 Issue 3
May  2023
Turn off MathJax
Article Contents
WANG Zaiming, CHEN Jinxia, SHEN Yuanyuan, et al.Borehole wall Stabilization technology for drilling the long horizontal section coal rock gas well JN1H[J]. Drilling Fluid & Completion Fluid,2023, 40(3):356-362 doi: 10.12358/j.issn.1001-5620.2023.03.011
Citation: WANG Zaiming, CHEN Jinxia, SHEN Yuanyuan, et al.Borehole wall Stabilization technology for drilling the long horizontal section coal rock gas well JN1H[J]. Drilling Fluid & Completion Fluid,2023, 40(3):356-362 doi: 10.12358/j.issn.1001-5620.2023.03.011

Borehole Wall Stabilization Technology for Drilling the Long Horizontal Section Coal Rock Gas Well JN1H

doi: 10.12358/j.issn.1001-5620.2023.03.011
  • Received Date: 2022-12-22
  • Rev Recd Date: 2023-01-24
  • Available Online: 2023-07-21
  • Publish Date: 2023-05-30
  • Wells with long horizontal sections were drilled in the eastern margin of Ordos basin and penetrated the 8# coalbed of the Benxi formation. Borehole stability problems during drilling and completion of the wells made it difficult to drill these extended reach wells. Studies were conducted on the borehole stability of the coalbed methane production wells. X-ray diffraction, SEM, CT and triaxial stress test were conducted on the rock cores taken from the carbonaceous mudstones, the intercalated gangues, and the upper and lower coalbeds that are possibly penetrated by the wells. Analyses of these core samples show that the minimum amount of clay minerals of the cores taken from formations outside the coalbeds is 35%, and the clays are mainly kaolinite and illite. The content of mixed layer illite-montmorillonite is less than 5%. Cores taken from the coalbeds have clay content between 10% and 18%, and is mainly kaolinite, and the content of the mixed layer illite-montmorillonite is about 25%. The widths of the fractures in the cores are generally 25-1,000 μm, mainly around those widths such as 25 μm, 40 μm, 64 μm, 100 μm, 250 μm and 400 μm. The maximum equivalent collapse pressure of the formations is 1.36 g/cm3 and is located in the middle and the lower coalbeds. A drilling fluid was formulated to drill these formations based on three policies, which were “prevent collapse by plugging, ensure the hole is as clean as possible, and prevent pipe sticking with good lubricity of the drilling fluid”. The drilling fluid formulated had these properties in laboratory evaluation: API filter loss of 1.6 mL, HTHP (70 ℃) filter loss of 4.4 mL, and sand bed (400 mD, 100 D) PPT filter loss of less than 15 mL, indicating that it had excellent plugging capacity. This drilling fluid was used to drill the well JN1H whose horizontal section is 2,019 m in length. Drilling and completion This well was successfully drilled and completed in 28.25 days, and stabilization of the long horizontal section of a coal rock gas well was reached.

     

  • loading
  • [1]
    林海,陈磊,张艺聪,等. 宁武盆地 4#和 9#煤岩坍塌机理[J]. 钻井液与完井液,2014,31(5):14-17. doi: 10.3969/j.issn.1001-5620.2014.05.004

    LIN Hai, CHEN Lei, ZHANG Yicong, et al. 4# and 9# coal collapse mechanism in Ningwu basin[J]. Drilling Fluid & Completion Fluid, 2014, 31(5):14-17. doi: 10.3969/j.issn.1001-5620.2014.05.004
    [2]
    李曙光,王红娜,徐博瑞,等. 大宁−吉县区块深层煤层气井酸化压裂产气效果影响因素分析[J]. 煤田地质与勘探,2022,50(3):165-172. doi: 10.12363/issn.1001-1986.21.12.0800

    LI Shuguang, WANG Hongna, XU Borui, et al. Influencing factors on gas production effect of acid fractured CBM wells in deep coal seam of Daning-Jixian block[J]. Coal Geology & Exploration, 2022, 50(3):165-172. doi: 10.12363/issn.1001-1986.21.12.0800
    [3]
    杨陆武. 难动用煤层气资源的高产开采技术研究: 论煤层气资源的特殊性及其开发工程中的“窗–尾效应”[J]. 煤炭学报,2016,41(1):32-39.

    YANG Luwu. Produce high rate gas from poor CBM reservoir: study on CBM resource types and “window–long tail effects”of reservoir during delivering gas[J]. Journal of China Coal Society, 2016, 41(1):32-39.
    [4]
    朱庆忠,杨延辉,左银卿,等. 对于高煤阶煤层气资源科学开发的思考[J]. 天然气工业,2020,40(1):55-60. doi: 10.3787/j.issn.1000-0976.2020.01.007

    ZHU Qingzhong, YANG Yanhui, ZUO Yinqing, et al. On the scientific exploitation of high–rank CBM resources[J]. Natural Gas Industry, 2020, 40(1):55-60. doi: 10.3787/j.issn.1000-0976.2020.01.007
    [5]
    邹才能,杨智,黄士鹏,等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发,2019,46(3):433-442. doi: 10.11698/PED.2019.03.02

    ZOU Caineng, YANG Zhi, HUANG Shipeng, et al. Resource types, formation, distribution and prospects of coal−measure gas[J]. Petroleum Exploration and Development, 2019, 46(3):433-442. doi: 10.11698/PED.2019.03.02
    [6]
    杨秀春,徐凤银,王虹雅,等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探,2022,50(3):30-41. doi: 10.12363/issn.1001-1986.21.12.0823

    YANG Xiuchun, XU Fengyin, WANG Hongya, et al. Exploration and development process of coalbed methane in eastern margin of Ordos basin and its enlightenment[J]. Coal Geology & Exploration, 2022, 50(3):30-41. doi: 10.12363/issn.1001-1986.21.12.0823
    [7]
    叶建平,侯淞译,张守仁. “十三五”期间我国煤层气勘探开发进展及下一步勘探方向[J]. 煤田地质与勘探,2022,50(3):15-22.

    YE Jianping, HOU Songyi, ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th Five-Year plan period and the next exploration direction[J]. Coal Geology & Exploration, 2022, 50(3):15-22.
    [8]
    张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150-159. doi: 10.13225/j.cnki.jccs.2017.1422

    ZHANG Qun, GE Chungui, LI Wei, et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society, 2018, 43(1):150-159. doi: 10.13225/j.cnki.jccs.2017.1422
    [9]
    秦勇,吴建光,李国璋,等. 煤系气开采模式探索及先导工程示范[J]. 煤炭学报,2020,45(7):2513-2522. doi: 10.13225/j.cnki.jccs.dz20.0621

    QIN Yong, WU Jianguang, LI Guozhang, et al. Patterns and pilot project demonstration of coal measures gas production[J]. Journal of China Coal Society, 2020, 45(7):2513-2522. doi: 10.13225/j.cnki.jccs.dz20.0621
    [10]
    王红伟,姜好仁,马财林,等. 大宁–吉县地区午城煤层气试验井组试采效果评价及影响因素分析[J]. 中国煤层气,2006,3(2):31-36. doi: 10.3969/j.issn.1672-3074.2006.02.008

    WANG Hongwei, JIANG Haoren, MA Cailin, et al. The analys is of production effect and the discussion of influencing factors of Wucheng coalbed methane test well group in Daning–Jixian area[J]. China Coalbed Methane, 2006, 3(2):31-36. doi: 10.3969/j.issn.1672-3074.2006.02.008
    [11]
    王成旺,冯延青,杨海星,等. 鄂尔多斯盆地韩城区块煤层气老井挖潜技术及应用[J]. 煤田地质与勘探,2018,46(5):212-218. doi: 10.3969/j.issn.1001-1986.2018.05.033

    WANG Chengwang, FENG Yanqing, YANG Haixing, et al. Potential tapping technology and its application in old CBM wells in Hancheng block of Ordos basin[J]. Coal Geology & Exploration, 2018, 46(5):212-218. doi: 10.3969/j.issn.1001-1986.2018.05.033
    [12]
    屈平,申瑞臣,付利,等. 三维离散元在煤层水平井井壁稳定中的应用[J]. 石油学报,2011,32(1):153-157. doi: 10.7623/syxb201101026

    QU Ping, SHEN Rui-chen, FU Li, et al. Application of the 3D discrete element method in the wellbore stability of coal-bedhorizontalwells[J]. Acta Petrolei Sinica, 2011, 32(1):153-157. doi: 10.7623/syxb201101026
    [13]
    黄维安,邱正松,杨力,等. 煤层气钻井井壁失稳机理及防塌钻井液技术[J]. 煤田地质与勘探,2013,41(2):37-41.

    HUANG Weian, QIU Zhengsong, YANG Li, et al. CBM drilling borehole instability mechanism and anti–sloughing drilling fluid technology[J]. Coal Geology & Exploration, 2013, 41(2):37-41.
    [14]
    汪伟英,夏健,陶杉,等. 钻井液对煤层气井壁稳定性影响实验研究[J]. 石油钻采工艺,2011,33(3):94-96. doi: 10.3969/j.issn.1000-7393.2011.03.025

    WANG Weiying, XIA Jian, TAO Shan, et al. The experimental study of the impact on CBM drilling wellbore stability[J]. Oil Drilling and Production Technology, 2011, 33(3):94-96. doi: 10.3969/j.issn.1000-7393.2011.03.025
    [15]
    陈在君,刘顶运,李登前. 煤层垮塌机理分析及钻井液防塌探讨[J]. 钻井液与完井液,2007,24(4):28-36. doi: 10.3969/j.issn.1001-5620.2007.04.009

    Chen Zaijun, Liu Dingyun, Li Dengqian. Collapse mechanism analysis of coal seam and the drilling fluid preventing collapse[J]. Drilling Fluid & Completion Fluid, 2007, 24(4):28-36. doi: 10.3969/j.issn.1001-5620.2007.04.009
    [16]
    方俊伟,吕忠楷,何仲,等. 化学凝胶堵剂承压堵漏技术在顺北3 井的应用[J]. 钻井液与完井液,2017,34(6):13-17. doi: 10.3969/j.issn.1001-5620.2017.06.003

    FANG Junwei, LU zhongkai, HE Zhong, et al. Application of chemical gel LCM on well Shunbei-3[J]. Drilling Fluid & Completion Fuild, 2017, 34(6):13-17. doi: 10.3969/j.issn.1001-5620.2017.06.003
    [17]
    聂志宏,巢海燕,刘莹,等. 鄂尔多斯盆地东缘深层煤层气生产特征及开发对策: 以大宁–吉县区块为例[J]. 煤炭学报,2018,43(6):1738-1746.

    NIE Zhihong, CHAO Haiyan, LIU Ying, et al. Development strategy and production characteristics of deep coalbed methane in the east Ordos basin: taking Daning−Jixian block for example[J]. Journal of China Coal Society, 2018, 43(6):1738-1746.
    [18]
    赵阳升, 孟巧荣, 康天合, 等. 显微CT试验技术与花岗岩热破裂特征的细观研究[J]. 岩石力学与工程学报, 2008, 27(1): 28-34.

    CHAO Yangsheng, MENG Qiaorong, KANG Tianhe, et al. Micro-CT experimental technology and meso-investigation on thermal fracturing characteristics of granite[J].Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 28-34.
    [19]
    付裕,陈新,冯中亮. 基于CT扫描的煤岩裂隙特征及其对破坏形态的影响[J]. 煤炭学报,2020,45(2):568-578.

    FU Yu, CHEN Xin, FENG Zhongliang. Characteristics of coal rockfractures based on CT scanning and its influence on failure modes[J]. Journal of China Coal Society, 2020, 45(2):568-578.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (703) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return