Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
CHANG Xiaofeng, SUN Jinsheng, WANG Qingchen.Hole cleaning technology for horizontal and deviated drilling: progress made and prospect[J]. Drilling Fluid & Completion Fluid,2023, 40(1):1-19 doi: 10.12358/j.issn.1001-5620.2023.01.001
Citation: CHANG Xiaofeng, SUN Jinsheng, WANG Qingchen.Hole cleaning technology for horizontal and deviated drilling: progress made and prospect[J]. Drilling Fluid & Completion Fluid,2023, 40(1):1-19 doi: 10.12358/j.issn.1001-5620.2023.01.001

Hole Cleaning Technology for Horizontal and Deviated Drilling: Progress Made and Prospect

doi: 10.12358/j.issn.1001-5620.2023.01.001
  • Received Date: 2022-09-15
  • Rev Recd Date: 2022-10-13
  • Publish Date: 2023-01-31
  • Although progresses made in horizontal drilling have been very beneficial to the development of conventional and unconventional oil and gas, two factors related to the cleaning of drilled cuttings from the horizontal section of a well seriously hinder the drilling operation. One of the factors is borehole wall instability, and the other is the difficulties in wellbore cleaning. Inability to remove drilled cuttings from a wellbore in a timely manner often results in increases in friction and torque on the downhole drill string, and the frequency of pipe sticking, and the worse is the simultaneous occurrence of lost circulation. First in this paper, the causes of cuttings bed formation and technical parameters for field operation are analyzed and summarized from two aspects, which are hole cleaning mechanisms and the main factors affecting hole cleaning (mud rheology, pipe rotation, hole inclination, sizes of the drilled cuttings, mud weight and flowrate etc.). Second, the methods and mechanisms of cuttings removal were systematically elaborated from the drilling fluid technologies and hole cleaning tools available both in China and abroad to help deal with the difficulties in hole cleaning in deviated and horizontal drilling. Finally, the development direction for horizontal and deviated hole cleaning technology is prospected to provide a reference for the hole cleaning technology development in the future.

     

  • loading
  • [1]
    王清臣,张建卿,胡祖彪,等. 长庆气田小井眼钻井液技术研究与应用[J]. 钻井液与完井液,2020,37(6):746-752. doi: 10.3969/j.issn.1001-5620.2020.06.012

    WANG Qingchen, ZHANG Jianqing, HU Zubiao, et al. Research and application of slim hole drilling fluid technology in Changqing gas field[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):746-752. doi: 10.3969/j.issn.1001-5620.2020.06.012
    [2]
    刘清友,敬俊,祝效华. 钻柱与实钻水平井眼接触形态及摩阻影响分析[J]. 西南石油大学学报:自然科学版,2017,39(5):163-169.

    LIU Qingyou, JING Jun, ZHU Xiaohua. Analysis on contact form and friction influence between drill string and actual horizontal borehole[J]. Journal of Southwest Petroleum University:Natural Science Edition, 2017, 39(5):163-169.
    [3]
    HM A, AH A, MSN A, et al. Hole cleaning and drilling fluid sweeps in horizontal and deviated wells: Comprehensive review[J]. Journal of Petroleum Science and Engineering, 2020, 186(106748):1-16.
    [4]
    李振川,姚昌顺,胡开利,等. 水平井井眼清洁技术研究与实践[J]. 新疆石油天然气,2022,18(1):48-53. doi: 10.12388/j.issn.1673-2677.2022.01.008

    LI Zhenchuan, YAO Changshun, HU Kaili, et al. Research and practice of horizontal hole cleaning technology[J]. Xinjiang Petroleum and Natural Gas, 2022, 18(1):48-53. doi: 10.12388/j.issn.1673-2677.2022.01.008
    [5]
    KELESSIDIS V C, BANDELIS G E. Flow patterns and minimum suspension velocity for efficient cuttings transport in horizontal and deviated wells in coiled-tubing drilling[J]. SPE Drilling & Completion, 2004, 19(4):213-227.
    [6]
    YEU W J, KATENDE A, SAGALA F, et al. Improving hole cleaning using low density polyethylene beads at different mud circulation rates in different hole angles[J]. Journal of Natural Gas Science and Engineering, 2019, 61:333-343. doi: 10.1016/j.jngse.2018.11.012
    [7]
    HYUN C, SHAH S, OSISANYA S. A three-layer modeling for cuttings transport with coiled tubing horizontal drilling[C]// Proceedings of the Spe Technical Conference & Exhibition, 2000.
    [8]
    ASCE. Cuttings transport mechanism in a large-diameter HDD borehole[J]. Journal of Pipeline Systems Engineering & Practice, 2014, 6(4):231-240.
    [9]
    聂勋勇. 大位移井井眼净化的解决方法[J]. 内蒙古石油化工,2014,40(22):42-45. doi: 10.3969/j.issn.1006-7981.2014.22.018

    NIE Xunyong. Solutions for hole cleaning of extended reach wells[J]. Inner Mongolia Petrochemical, 2014, 40(22):42-45. doi: 10.3969/j.issn.1006-7981.2014.22.018
    [10]
    ADARI R B, MISKA S, KURU E, et al. Selecting drilling fluid properties and flow rates for effective hole cleaning in high-angle and horizontal wells[C]// proceedings of the SPE Annual Technical Conference and Exhibition, SPE-63050-MS, 2000 .
    [11]
    OKRAJNI S S, AZAR J J. The effects of mud rheology on annular hole cleaning in directional wells[J]. Spe Drilling Engineering, 1986, 1(4):297-308. doi: 10.2118/14178-PA
    [12]
    PIROOZIAN A, ISMAIL I, YAACOB Z, et al. Impact of drilling fluid viscosity, velocity and hole inclination on cuttings transport in horizontal and highly deviated wells[J]. Journal of Petroleum Exploration & Production Technologies, 2012, 2(3):149-156.
    [13]
    PEDEN J M, FORD J T, OYENEYIN M B. Comprehensive experimental investigation of drilled cuttings transport in inclined wells including the effects of rotation and eccentricity[C]// European Petroleum Conference. 1990.
    [14]
    MOHAMMADSALEHI M, MALEKZADEH N. Optimization of hole cleaning and cutting removal in vertical, deviated and horizontal wells[J]. Society of Petroleum Engineers. 2011, 2(5): 67-79, .
    [15]
    NAGANAWA S. Experimental study of effective cuttings transport in drilling highly inclined geothermal wells[J]. Journal of the Japanese Association for Petroleum Technology, 2013, 78(3):257-264. doi: 10.3720/japt.78.257
    [16]
    BILGESU H I, MISHRA N, AMERI S. Understanding the effect of drilling parameters on hole cleaning in horizontal and deviated wellbores using computational fluid dynamics[C]. Proceedings of the Society of Petroleum Engineers, 2007.
    [17]
    OZBAYOGLU E M, MISKA S Z, TAKACH N, et al. Sensitivity analysis of major drilling parameters on cuttings transport during drilling highly-inclined wells[J]. Liquid Fuels Technology, 2009, 27(1):122-133.
    [18]
    SAASEN A, LKLINGHOLM G. The effect of drilling fluid rheological properties on hole cleaning[C]. proceedings of the IADC/SPE Drilling Conference, 2002.
    [19]
    OH A, ES A, PS B. Investigating the impact of drillpipe's rotation and eccentricity on cuttings transport phenomenon in various horizontal annuluses using computational fluid dynamics (CFD)[J]. Journal of Petroleum Science and Engineering, 2017, 156:801-813. doi: 10.1016/j.petrol.2017.06.059
    [20]
    GEORGE M, ELGADDAFI R, AHMED R, et al. Performance of fiber-containing synthetic-based sweep Fluids[J]. Journal of Petroleum Science & Engineering, 2014, 119:185-195.
    [21]
    陈锋,狄勤丰,袁鹏斌,等. 高效岩屑床清除钻杆作用机理[J]. 石油学报,2012,33(2):298-303. doi: 10.7623/syxb201202018

    CHEN Feng, DI Qinfeng, YUAN Pengbin, et al. Mechanism of high efficiency cutting machine for removing drill pipe[J]. Journal of Petroleum, 2012, 33(2):298-303. doi: 10.7623/syxb201202018
    [22]
    孙晓峰,闫铁,崔世铭,等. 钻杆旋转影响大斜度井段岩屑分布的数值模拟[J]. 断块油气田,2014,21(1):92-96. doi: 10.6056/dkyqt201401022

    SUN Xiaofeng, YAN Tie, CUI Shiming, et al. Numerical simulation of the effect of drill pipe rotation on cuttings distribution in highly deviated sections[J]. Block Oil and Gas Field, 2014, 21(1):92-96. doi: 10.6056/dkyqt201401022
    [23]
    WALKER S, LI J. The effects of particle size, fluid rheology, and pipe eccentricity on cuttings transport[C]. proceedings of the SPE/ICoTA Coiled Tubing Roundtable, SPE-60755-MS, 2000.
    [24]
    RAMADAN A, SKALLE P, JOHANSEN S T. A mechanistic model to determine the critical flow velocity required to initiate the movement of spherical bed particles in inclined channels[J]. Chemical engineering science, 2003, 58(10):2153-2163. doi: 10.1016/S0009-2509(03)00061-7
    [25]
    YU M, TAKACH N E, NAKAMURA D R, et al. An experimental study of hole cleaning under simulated downhole conditions[C]. proceedings of the Spe Technical Conference & Exhibition, 2007.
    [26]
    陈全发,刘显锋. 提高机械钻速的钻井液理论与技术研究[J]. 中国石油和化工标准与质量,2013,33(20):87-96. doi: 10.3969/j.issn.1673-4076.2013.20.070

    CHEN Quanfa, LIU Xianfeng. Research on the theory and technology of drilling fluid for improving ROP[J]. China Petroleum and Chemical Standards and Quality, 2013, 33(20):87-96. doi: 10.3969/j.issn.1673-4076.2013.20.070
    [27]
    邱正松, 刘扣其, 曹杰, 等. 海洋深水"恒流变"油基钻井液实验研究[C]// 2014年度钻井技术研讨会暨第十四届石油钻井院(所)长会议, 中国石油学会, 2014.

    QIU Zhengsong, LIU Kouqi, CAO Jie, et al. Experimental study on offshore deepwater "constant rheological" oil-based drilling fluid[C]// 2014 Annual Drilling Technology Seminar and the 14th Meeting of Heads of Petroleum Drilling Institutes (Institutes), Chinese Petroleum Society, 2014.
    [28]
    孙金声,苏义脑,罗平亚,等. 超低渗透钻井液提高地层承压能力机理研究[J]. 钻井液与完井液,2005,22(5):1-3.

    SUN Jinsheng, SU Yinao, LUO Pingya, et al. Study on mechanism of ultra-low permeability drilling fluid improving formation pressure bearing capacity[J]. Drilling Fluid & Completion Fluid, 2005, 22(5):1-3.
    [29]
    张洪泉,任中启,董明健. 大斜度大位移井岩屑床的解决方法[J]. 石油钻探技术,1999,5(3):6-8. doi: 10.3969/j.issn.1001-0890.1999.03.002

    ZHANG Hongquan, REN Zhongqi, DONG Mingjian. Solution to cutting bed of highly deviated and extended reach wells[J]. Petroleum Drilling Technology, 1999, 5(3):6-8. doi: 10.3969/j.issn.1001-0890.1999.03.002
    [30]
    张国龙,曹满党,倪益明. 深井大尺寸井眼钻速低的原因及对策[J]. 石油钻探技术,2001,29(2):24-25. doi: 10.3969/j.issn.1001-0890.2001.02.008

    ZHANG Guolong, CAO Mandang, NI Yiming. Reasons and countermeasures for low penetration rate of large size deep wells[J]. Petroleum Drilling Technology, 2001, 29(2):24-25. doi: 10.3969/j.issn.1001-0890.2001.02.008
    [31]
    Hemphilletal T,于军泉,郭健康. 深水钻井机械钻速的优化: 钻速限度的确定[J]. 石油石化节能,2003,19(7):29-33. doi: 10.3969/j.issn.2095-1493.2003.07.013

    HEMPHILLETAL T, YU Junquan, GUO Jiankang. Optimization of penetration rate of deepwater drilling machinery: determination of penetration rate limit[J]. Petroleum and Petrochemical Energy Conservation, 2003, 19(7):29-33. doi: 10.3969/j.issn.2095-1493.2003.07.013
    [32]
    张振兴,李清,阎宏博. "两速"对大斜度井井眼净化的影响[J]. 石油化工应用,2010,29(Z1):90-94. doi: 10.3969/j.issn.1673-5285.2010.02.024

    ZHANG Zhenxing, LI Qing, YAN Hongbo. The influence of "two speeds" on hole cleaning in highly deviated wells[J]. Petrochemical Application, 2010, 29(Z1):90-94. doi: 10.3969/j.issn.1673-5285.2010.02.024
    [33]
    TAGHIPOUR A, LUND B, YTREHUS J D, et al. Experimental study of hydraulics and cuttings transport in circular and noncircular wellbores[J]. Journal of Energy Resources Technology, 2014, 136(2):022904-022915. doi: 10.1115/1.4027452
    [34]
    王天成. 提高水平井钻井液携岩能力的实践及认识[J]. 石油钻探技术,1996,24(1):18-21.

    WANG Tiancheng. Practice and understanding of improving rock carrying capacity of drilling fluid for horizontal wells[J]. Petroleum Drilling Technology, 1996, 24(1):18-21.
    [35]
    TAN T Y, ISMAIL I, KATENDE A, et al. Experimental investigation of cuttings lifting efficiency using low and high density polyethylene beads in different hole angles[J]. Journal of Materials Sciences and Applications, 2017, 3:102-115.
    [36]
    HAKIM H, KATENDE A, SAGALA F, et al. Performance of polyethylene and polypropylene beads towards drill cuttings transportation in horizontal wellbore[J]. Journal of Petroleum Science & Engineering, 2018, 165:962-969.
    [37]
    BOYOU N V, ISMAIL I, HAMZAH M H, et al. Polypropylene beads in water-based mud for cuttings transportation improvement[J]. Chemical Engineering Transactions, 2018, 63:787-792.
    [38]
    ONUOHA M, ISMAIL I, PIROOZIAN A, et al. Improving the cuttings transport performance of water-based mud through the use of polypropylene beads[J]. Sains Malaysiana, 2014, 44(4):629-634.
    [39]
    MAJIDI R, TAKACH N, TULSA U O, et al. Fiber sweeps improve hole cleaning[J]. American Association of Drilling Engineers, 2015, 12:342-356.
    [40]
    LIU Q, TIAN S, SHEN Z, et al. A new equation for predicting settling velocity of solid spheres in fiver containing power-law fluids[J]. Powder Technology:An International Journal on the Science and Technology of Wet and Dry Particulate Systems, 2018, 329:270-281.
    [41]
    MOVAHEDI H, FARAHANI M V, JAMSHIDI S. Application of hydrated basil seeds (HBS) as the herbal fiber on hole cleaning and filtration control[J]. Journal of Petroleum Science and Engineering, 2017, 152:212-218. doi: 10.1016/j.petrol.2017.02.014
    [42]
    SONG K, WU Q, LI M C, et al. Performance of low solid bentonite drilling fluids modified by cellulose nanoparticles[J]. Journal of Natural Gas Science & Engineering, 2016, 34:1403-1411.
    [43]
    ELGADDAFI R, AHMED R, GEORGE M, et al. Settling behavior of spherical particles in fiber-containing drilling fluids[J]. Journal of Petroleum Science & Engineering, 2012, 84:20-28.
    [44]
    GEORGE M, AHMED R, GROWCOCK F. Rheological properties of fiber-containing drilling sweeps at ambient and elevated temperatures[C]. proceedings of the The AADE National Technical Conference and Exhibition, 2011.
    [45]
    OSEH J O, NORRDIN M N A M, FAROOQI F, et al. Experimental investigation of the effect of henna leaf extracts on cuttings transportation in highly deviated and horizontal wells[J]. Journal of Petroleum Exploration & Production Technologies, 2019, 9(3):2387-2404.
    [46]
    OKON A N, AGWU O E, UDOH F D. SPE-178263-MS Evaluation of the cuttings carrying capacity of a formulated synthetic-based drilling mud[C]. proceedings of the NAICE, 2015.
    [47]
    袁野,蔡记华,王济君,等. 纳米二氧化硅改善钻井液滤失性能的实验研究[J]. 石油钻采工艺,2013,35(3):30-33,41. doi: 10.3969/j.issn.1000-7393.2013.03.010

    YUAN Ye, CAI Jihua, WANG Jijun, et al. Experimental study on nano silica improving the filtration performance of drilling fluid[J]. Petroleum Drilling and Production Process, 2013, 35(3):30-33,41. doi: 10.3969/j.issn.1000-7393.2013.03.010
    [48]
    刘凡,蒋官澄,王凯,等. 新型纳米材料在页岩气水基钻井液中的应用研究[J]. 钻井液与完井液,2018,35(1):27-33. doi: 10.3969/j.issn.1001-5620.2018.01.005

    LIU Fan, JIANG Guancheng, WANG Kai, et al. Application of new nano materials in shale gas water-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2018, 35(1):27-33. doi: 10.3969/j.issn.1001-5620.2018.01.005
    [49]
    BOYOU N V, ISMAIL I, SULAIMAN W, et al. Experimental investigation of hole cleaning in directional drilling by using nano-enhanced water-based drilling fluids[J]. Journal of Petroleum Science and Engineering, 2019, 176:220-231. doi: 10.1016/j.petrol.2019.01.063
    [50]
    GBADAMOSI A O, JUNIN R, ABDALLA Y, et al. Experimental investigation of the effects of silica nanoparticle on hole cleaning efficiency of water-based drilling mud[J]. Journal of Petroleum Science & Engineering, 2019, 172:1226-1234.
    [51]
    ELOCHUKWU H, GHOLAMI R, DOL S S. An approach to improve the cuttings carrying capacity of nanosilica based muds[J]. Journal of Petroleum ence & Engineering, 2017, 152:309-316.
    [52]
    闫丽丽,李丛俊,张志磊,等. 基于页岩气"水替油"的高性能水基钻井液技术[J]. 钻井液与完井液,2015,32(5):1-6.

    YAN Lili, LI Congjun, ZHANG Zhilei, et al. High performance water-based drilling fluid technology based on shale gas "water replacing oil"[J]. Drilling Fluid & Completion Fluid, 2015, 32(5):1-6.
    [53]
    GAO E, YOUNG A C. Hole cleaning in extended reach wells: field experience and theoretical analysis using a pseudo-oil (acetal) based mud[J]. Journal of Petroleum ence & Engineering, 1995, 12:105-121.
    [54]
    KENNY P, HEMPHILL T. Hole-cleaning capabilities of an ester-based drilling fluid system[J]. SPE Drilling & Completion, 1996, 11(1):3-10.
    [55]
    WERNER B, MYRSETH V, SAASEN A. Viscoelastic properties of drilling fluids and their influence on cuttings transport[J]. Journal of Petroleum Science & Engineering, 2017, 156:845-851.
    [56]
    YTREHUS J D, LUND B, TAGHIPOUR A, et al. Cuttings bed removal in deviated wells[C]// proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, 2018.
    [57]
    DUAN M, MISKA S, YU M, et al. Experimental study and modeling of cuttings transport using foam with drillpipe rotation[J]. SPE Drilling & Completion, 2010, 25(3):352-362.
    [58]
    SHIGEMI N, ATSUSHI O, YOSHIHIRO M, et al. Cuttings transport in directional and horizontal wells while aerated mud drilling[C]// proceedings of the Iadc/spe Asia Pacific Drilling Technology, 2002.
    [59]
    秦国鲲,耿宏章,刘延明,等. 泡沫钻井液动密度随井深变化关系模拟研究[J]. 石油钻探技术,2004,32(5):22-24. doi: 10.3969/j.issn.1001-0890.2004.05.007

    QIN Guokun, GENG Hongzhang, LIU Yanming, et al. Simulation study on the relationship between dynamic density of foam drilling fluid and well depth[J]. Petroleum Drilling Technology, 2004, 32(5):22-24. doi: 10.3969/j.issn.1001-0890.2004.05.007
    [60]
    YAN T, WANG K, SUN X, et al. State-of-the-art cuttings transport with aerated liquid and foam in complex structure wells[J]. Renewable and Sustainable Energy Reviews, 2014, 37:560-568. doi: 10.1016/j.rser.2014.05.047
    [61]
    HERZHAFT B, TOURE A, BRUNI F, et al. Aqueous foams for underbalanced drilling: The question of solids[C]// proceedings of the SPE Annual Technical Conference and Exhibition, SPE-62898-MS, 2000.
    [62]
    SAINTPERE S, MARCILLAT Y, BRUNI F, et al. Hole cleaning capabilities of drilling foams compared to conventional fluids[C]// proceedings of the SPE Annual Technical Conference and Exhibition, SPE-63049-MS, 2000.
    [63]
    OZBAYOGLU E M, MISKA S Z, REED T, et al. Cuttings transport with foam in horizontal & highly-inclined wellbores[C]// proceedings of the SPE/IADC Drilling Conference, SPE-79856-MS, 2003.
    [64]
    MARTINS A L, LOURENÇO A M F, DE SÁ C H M. Foam property requirements for proper hole cleaning while drilling horizontal wells in underbalanced conditions[J]. SPE Drilling & Completion, 2001, 16(4):195-200.
    [65]
    XU J, OZBAYOGLU E, MISKA S, et al. Cuttings transport with foam in highly inclined wells at simulated downhole conditions[J]. Archives of Mining Sciences, 2013, 58(2):481-494. doi: 10.2478/amsc-2013-0032
    [66]
    GUMATI A, TAKAHASHI H, GIWELLI A A. Effect of drillpipe rotation on cuttings transport during horizontal foam drilling[J]. Bulletin of the Japan Petroleum Institute, 2013, 56(4):230-235. doi: 10.1627/jpi.56.230
    [67]
    CHEN Z, AHMED R M, MISKA S Z, et al. Experimental study on cuttings transport with foam under simulated horizontal downhole conditions[J]. SPE Drilling & Completion, 2007, 22(4):304-312.
    [68]
    PRASUN S, GHALAMBOR A. Transient cuttings transport with foam in horizontal wells-a numerical simulation study for applications in depleted reservoirs[C]// proceedings of the SPE International Conference and Exhibition on Formation Damage Control, SPE, 2018.
    [69]
    OZBAYOGLU E M M, OSGOUEI R E E, OZBAYOGLU A M M, et al. Hole-cleaning performance of gasified drilling fluids in horizontal well sections[J]. SPE Journal, 2012, 17(3):912-923. doi: 10.2118/131378-PA
    [70]
    YU M, MELCHER D, TAKACH N, et al. A New Approach to Improve Cuttings Transport in horizontal and inclined wells[C]// proceedings of the SPE Annual Technical Conference and Exhibition, SPE-90529-MS, 2004.
    [71]
    YING Ying, LI G C J, LING Li, et al. A novel approach of cuttings transport with bubbles in horizontal wells[J]. Advanced Materials Research, 2012, 524:1314-1317.
    [72]
    DENNEY, DENNIS. Cuttings transport with foam under simulated downhole horizontal conditions[J]. Journal of Petroleum Technology, 2006, 58(11):50-51. doi: 10.2118/1106-0050-JPT
    [73]
    SAYINDLAA S, LUNDB B, YTREHUSB J D, et al. Hole-cleaning performance comparison of oil-based and water-based drilling fluids[J]. Journal of Petroleum Science and Engineering, 2017, 159:245-261.
    [74]
    BULGACHEV R, POUGET P. New experience in monofilament fiber tandem sweeps hole cleaning performance on kharyaga oilfield, timan-pechora region of Russia[C]// proceedings of the SPE Russian Oil and Gas Technical Conference and Exhibition, SPE, 2006.
    [75]
    WERNER B, LUND B, MYRSETH V, et al. Comparison of rheological properties of oil-based and KCl drilling fluids[C]. proceedings of the SPE Bergen One Day Seminar, SPE, 2016.
    [76]
    LYU S, WANG S, CHEN X, et al. Experimental study of a degradable polymer drilling fluid system for coalbed methane well[J]. Journal of Petroleum Science and Engineering, 2019, 178:678-690. doi: 10.1016/j.petrol.2019.03.065
    [77]
    KOPALLY P, THYAGARAJU B, KALI A. New wells and new challenges: selecting the most appropriate drilling and drilling fluid practices[C]// proceedings of the SPE/IADC Indian Drilling Technology Conference and Exhibition, SPE, 2006.
    [78]
    PUYMBROECK L V. Increasing drilling performance using hydro-mechanical hole cleaning devices[M]. Increasing Drilling Performance Using Hydro-Mechanical Hole Cleaning Devices, 2013.
    [79]
    王建龙,郑锋,刘学松,等. 井眼清洁工具研究进展及展望[J]. 石油机械,2018,46(9):18-23. doi: 10.16082/j.cnki.issn.1001-4578.2018.09.004

    WANG Jianlong, ZHENG Feng, LIU Xuesong, et al. Research progress and prospect of borehole cleaning tools[J]. Petroleum Machinery, 2018, 46(9):18-23. doi: 10.16082/j.cnki.issn.1001-4578.2018.09.004
    [80]
    NWAGU C, AWOBADEJO T, GASKIN K. Application of mechanical cleaning device: hole cleaning tubulars to improve hole cleaning[M]. Application of Mechanical Cleaning Device: Hole Cleaning Tubulars To Improve Hole Cleaning, 2014.
    [81]
    SWIETLIK G. Cutting bed impeller: US, 08/877881[P]. 1999-08-17.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(10)

    Article Metrics

    Article views (1636) PDF downloads(291) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return