Volume 39 Issue 5
Jan.  2023
Turn off MathJax
Article Contents
SHE Chaoyi, LI Bo, DAI Feng, et al.Borehole wall strengthening with micron and nano materials in “Dabadong” area of Changning[J]. Drilling Fluid & Completion Fluid,2022, 39(5):573-578 doi: 10.12358/j.issn.1001-5620.2022.05.007
Citation: SHE Chaoyi, LI Bo, DAI Feng, et al.Borehole wall strengthening with micron and nano materials in “Dabadong” area of Changning[J]. Drilling Fluid & Completion Fluid,2022, 39(5):573-578 doi: 10.12358/j.issn.1001-5620.2022.05.007

Borehole Wall Strengthening with Micron and Nano Materials in “Dabadong” Area of Changning

doi: 10.12358/j.issn.1001-5620.2022.05.007
  • Received Date: 2022-03-23
  • Accepted Date: 2022-04-22
  • Rev Recd Date: 2022-04-21
  • Publish Date: 2023-01-10
  • The Longmaxi formation in Changning is highly developed with microfractures because of the tectonic action in the “Dabadong” area and the formation rock components. The sizes of the primary pores are distributed in a range of 0.05-2 μm. The formation stability is very poor and overpull and resistance have been frequently encountered during drilling. Increase in mud weight only cannot control wellbore instability. The drilling fluids presently in use only contain micron-sized plugging agents and are unable to effectively plug the nanometer pores. The lack of nanometer plugging agents cannot help form low permeability plugging layers to hinder the transmission of borehole pressure into the formations. By introducing a nanometer graphene plugging agent, the drilling fluid has both micron-sized and nano-sized plugging agents. Furthermore, the mud weight was determined through geomechanics model. With all these technologies and mud property control, the borehole wall was strengthened. Application of the borehole wall strengthening technology in the well Ning-209H69 showed that the properties of the drilling fluid were stable, no downhole troubles were encountered in the whole drilling process, the average percent hole enlargement was less than 8%, and the borehole wall collapse was effectively eliminated.

     

  • loading
  • [1]
    董大忠,施振生,孙莎莎,等. 黑色页岩微裂缝发育控制因素: 以长宁双河剖面五峰组—龙马溪组为例[J]. 石油勘探与开发,2018,45(5):763-774. doi: 10.11698/PED.2018.05.02

    DONG Dazhong, SHI Zhensheng, SUN Shasha, et al. Factors controlling microfractures in black shale: A case study of Ordovician Wufeng formation-Silurian Longmaxi formation in Shuanghe profile, Changning area, Sichuan basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(5):763-774. doi: 10.11698/PED.2018.05.02
    [2]
    MCLELLAN P J, CORMIER K. Borehole instability in fissile, dipping shales, northeastern British columbia[C]//SPE Gas Technology Symposium. OnePetro, 1996.
    [3]
    王星媛,舒小波,王兰,等. 长宁-威远龙马溪组地层微纳米防漏堵漏技术研究与应用[J]. 第 32 届全国天然气学术年会 (2020) 论文集,2020.

    WANG Xingyuan, SHU Xiaobo, WANG Lan, et al. Research and application of micron-nano-sized anti-leak technology in Changning-weiyuan Longmaxi formation[J]. National Natural Gas Academic Annual Conference Proceedings, 2020.
    [4]
    郭建春,陶亮,陈迟,等. 川南地区龙马溪组页岩混合润湿性评价新方法[J]. 石油学报,2020,41(2):216-225. doi: 10.7623/syxb202002007

    GUO Jianchun, TAO Liang, CHEN Chi, et al. A new method for evaluating the mixed wettability of shale in Longmaxi formation in the southern Sichuan[J]. Acta Petrolei Sinica, 2020, 41(2):216-225. doi: 10.7623/syxb202002007
    [5]
    曹文科,邓金根,蔚宝华,等. 基于多孔介质热弹性理论的井壁诱导缝成因[J]. 天然气工业,2017,37(6):79-85. doi: 10.3787/j.issn.1000-0976.2017.06.011

    CAO Wenke, DENG Jingen, WEI Baohua, et al. Genesis of induced fractures on borehole walls based on the thermo-poroelasticity theory[J]. Natural Gas Industry, 2017, 37(6):79-85. doi: 10.3787/j.issn.1000-0976.2017.06.011
    [6]
    易成林,杨逸群,江金强,等. 颗粒乳化剂的研究及应用[J]. 化学进展,2011,23(1):65-77.

    YI Chenglin, YANG Yiqun, JIANG Jinqiang, et al. Research and application of particle emulsifiers[J]. Progress in Chemistry, 2011, 23(1):65-77.
    [7]
    王辉,王富华. 纳米技术在钻井液中的应用探讨[J]. 钻井液与完井液,2005,22(2):50-54.

    WANG Hui, WANG Fuhua. Discussion the application of nanotechnology in drilling fluid[J]. Drilling Fluid & Completion Fluid, 2005, 22(2):50-54.
    [8]
    王毅,唐成磊,蓝强. 纳米技术在钻井完井液中的应用前景[J]. 钻井液与完井液,2008,25(1):69-71. doi: 10.3969/j.issn.1001-5620.2008.01.023

    WANG Yi, TANG Chenglei, LAN Qiang. Application prospect of nanotechnology in drilling fluid and completion fluid[J]. Drilling Fluid & Completion Fluid, 2008, 25(1):69-71. doi: 10.3969/j.issn.1001-5620.2008.01.023
    [9]
    姚如钢,蒋官澄,李威,等. 新型抗高温高密度纳米基钻井液研究与评价[J]. 钻井液与完井液,2013,30(2):25-28. doi: 10.3969/j.issn.1001-5620.2013.02.008

    YAO Rugang, JIANG Guancheng, LI Wei, et al. Research and evaluation of a novel high-temperature resistant high-density Namiki drilling fluid[J]. Drilling Fluid & Completion Fluid, 2013, 30(2):25-28. doi: 10.3969/j.issn.1001-5620.2013.02.008
    [10]
    黄红玺,张峰,许明标,等. 油包水乳状液稳定性影响因素分析[J]. 断块油气田,2009,16(6):99-101.

    HUANG Hongxi, ZHANG Feng, XU Mingbiao, et al. Main influence factors of water-in-oil emulsion stability[J]. Fault-Block Oil & Gas Field, 2009, 16(6):99-101.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (520) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return