Citation: | XU Xinli.High temperature resistance of conventional set sand cement under cumulative working conditions[J]. Drilling Fluid & Completion Fluid,2021, 38(6):754-759 doi: 10.12358/j.issn.1001-5620.2021.06.015 |
[1] |
王苏雯. 稠油火驱开采技术研究[J]. 石化技术,2018,25(3):87-94. doi: 10.3969/j.issn.1006-0235.2018.03.066
WANG Suxia. Research on fire flooding technology of heavy oil[J]. Petrochemical Technology, 2018, 25(3):87-94. doi: 10.3969/j.issn.1006-0235.2018.03.066
|
[2] |
CHENG X, DONG Q, MA Y, et al. Mechanical and thermal properties of aluminate cement paste with blast furnace slag at high temperatures[J]. Construction and Building Materials, 2019, 228:84-95.
|
[3] |
江航,许强辉,马德胜,等. 注空气开采过程中稠油结焦量影响因素[J]. 石油学报,2016,37(8):1030-1036.
JIANG Hang, XU qianghui, MA Desheng, et al. Influencing factors of heavy oil coking amount in air injection production[J]. Journal of Petroleum, 2016, 37(8):1030-1036.
|
[4] |
GUO S, BU Y, LIU H, et al. The abnormal phenomenon of class G oil well cement endangering the cementing security in the presence of retarder[J]. Construction and Building Materials, 2014, 54:118-122. doi: 10.1016/j.conbuildmat.2013.12.057
|
[5] |
KRAKOWIAK K J, THOMAS J J, MUSSO S, et al. Nano-chemo-mechanical signature of conventional oil-well cement systems: Effects of elevated temperature and curing time[J]. Cement and Concrete Research, 2015, 67:103-121. doi: 10.1016/j.cemconres.2014.08.008
|
[6] |
张景富. G级油井水泥的水化硬化及性能[D]. 浙江大学, 2001.
ZHANG Jingfu. Hydration hardening and properties of grade G oil well cement[D]. Zhejiang University, 2001.
|
[7] |
ALONSO C, FERNANDEZ L. Dehydration and rehydration processes of cement paste exposed to high temperature environments[J]. Journal of Materials Science, 2004, 39(9):3015-3024. doi: 10.1023/B:JMSC.0000025827.65956.18
|
[8] |
LIU K, CHENG X, ZHANG C, et al. Evolution of pore structure of oil well cement slurry in suspension-solid transition stage[J]. Construction and Building Materials, 2019, 214:382-398.
|
[9] |
LIU K, CHENG X, LI J, et al. Effects of microstructure and pore water on electrical conductivity of cement slurry during early hydration[J]. Composites:Part B, Engineering, 2019, 177:1-15.
|
[10] |
杨智光,崔海清,肖志兴,等. 深井高温条件下油井水泥强度变化规律研究[J]. 石油学报,2008,29(3):435-437. doi: 10.3321/j.issn:0253-2697.2008.03.024
YANG Zhiguang, CUI Haiqing, XIAO Zhixing, et al. Study on strength variation of oil well cement under high temperature in deep well[J]. Journal of Petroleum, 2008, 29(3):435-437. doi: 10.3321/j.issn:0253-2697.2008.03.024
|
[11] |
GARNIER A, SAINT-MARC J. An innovative methodology for designing cement-sheath integrity exposed to steam stimulation[C]. SPE 117709, 2010.
|
[12] |
PERNITES R B, SANTRA A K. Portland cement solutions for ultra-high temperature wellbore applications[J]. Cement and Concrete Composites, 2016, 72:89-103. doi: 10.1016/j.cemconcomp.2016.05.018
|
[13] |
LEONARDO B, COSTA D S, Cezar J, et al. Silica content in fluence on cement compressive strength in wells subjected to steam injection[J]. Journal of Petroleum Science and Engineering, 2017, 158:626-633. doi: 10.1016/j.petrol.2017.09.006
|
[14] |
程小伟,张明亮,李早元,等. 火烧油层工况下加砂油井水泥石失效演化研究[J]. 硅酸盐通报,2016,35(8):2335-2340.
CHENG Xiaowei, ZHANG Mingliang, LI Zaoyuan, et al. Study on failure evolution of cement paste in sand adding oil well under in situ combustion condition[J]. Silicate Bulletin, 2016, 35(8):2335-2340.
|
[15] |
中国国家标准化管理委员会, GB/T 19139-2012油井水泥试验方法[S]. 北京: 中国标准出版社, 2012.
National Standardization Administration of China, test methods for oil well cement[S]. Beijing: China Standard Press , 2012.
|
[16] |
IRICO S, GASTALDI D, CANONICO F, et al. Investigation of the microstructural evolution of calcium sulfoaluminate cements by thermoporometry[J]. Cement and Concrete Research, 2013, 53:239-247. doi: 10.1016/j.cemconres.2013.06.012
|