留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

响应面法优化纳米材料稳定的泡沫钻井液

李强 李志勇 张浩东 孙晗森 李林源 李新岗 王玥

李强, 李志勇, 张浩东, 孙晗森, 李林源, 李新岗, 王玥. 响应面法优化纳米材料稳定的泡沫钻井液[J]. 钻井液与完井液, 2020, 37(1): 23-30. doi: 10.3969/j.issn.1001-5620.2020.01.004
引用本文: 李强, 李志勇, 张浩东, 孙晗森, 李林源, 李新岗, 王玥. 响应面法优化纳米材料稳定的泡沫钻井液[J]. 钻井液与完井液, 2020, 37(1): 23-30. doi: 10.3969/j.issn.1001-5620.2020.01.004
LI Qiang, LI Zhiyong, ZHANG Haodong, SUN Hansen, LI Linyuan, LI Xingang, WANG Yue. Study on Foam Drilling Fluid Stabilized with Nanomaterials Optimized with RSM[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(1): 23-30. doi: 10.3969/j.issn.1001-5620.2020.01.004
Citation: LI Qiang, LI Zhiyong, ZHANG Haodong, SUN Hansen, LI Linyuan, LI Xingang, WANG Yue. Study on Foam Drilling Fluid Stabilized with Nanomaterials Optimized with RSM[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(1): 23-30. doi: 10.3969/j.issn.1001-5620.2020.01.004

响应面法优化纳米材料稳定的泡沫钻井液

doi: 10.3969/j.issn.1001-5620.2020.01.004
基金项目: 

国家科技重大专项课题“新型低伤害强防塌钻井液体系研究”(2016ZX05044003-003)

详细信息
    作者简介:

    李强,在读硕士研究生,1995年生,主要从事煤层气井用钻井液的研究。E-mail:lqiang0916@163.com

    通讯作者:

    李志勇,博士,副教授,从事钻井液优化设计、储层保护和钻井废弃物处理等研究。E-mail:lzysoar11@163.com

  • 中图分类号: TE254

Study on Foam Drilling Fluid Stabilized with Nanomaterials Optimized with RSM

  • 摘要: 为提高泡沫钻井液的稳定性,向体系中引入纳米材料,并研究了纳米材料润湿性对于泡沫质量的影响。根据Box-Behnken Design设计原理,采用三因素三水平响应曲面法,优化了起泡剂BS-12、亲水性纳米SiO2和增黏剂XC的加量,探究了它们之间交互作用对于泡沫综合指数的影响,并以此为基础研制了泡沫钻井液体系。结果表明,纳米材料润湿性会显著影响不同类型起泡剂的泡沫质量,疏水性纳米材料能够提高阴离子起泡剂SDS的泡沫稳定性,但对两性离子起泡剂BS-12的泡沫起泡量和半衰期呈现负相关关系,亲水性纳米材料才能提高两性离子起泡剂BS-12的泡沫稳定性;通过响应曲面优化设计得到的最优浓度配比为:0.6% BS-12+4%纳米SiO2+0.3% XC。响应曲面分析表明,对于泡沫综合指数的显著性影响程度,纳米材料浓度 > 起泡剂浓度 > XC浓度;纳米稳定的泡沫钻井液体系性能评价表明,该体系表观黏度为42mPa·s,密度为0.81 g/cm3,半衰期达60 h,能长时间保持性能稳定,抑制性强,线性膨胀率较清水下降65%,储层保护效果好,煤岩岩心气测渗透率恢复率在90%以上,携岩效果好,岩屑和煤屑的沉降速度较清水降低92%以上,能够满足现场煤层气钻井的需要。

     

  • [1] 徐加放,邱正松,何群.可循环微泡沫钻井液的防塌机理及应用研究[J].钻井液与完井液, 2010, 27(4):7-9.

    XU Jiafang, QIU Zhengsong, HE Qun. Anti collapse mechanism and application of recyclable micro foam drilling fluid[J]. Drilling Fluid&Completion Fluid, 2010, 27(4):7-9.
    [2] PORTER, M, HILL A, VIEIRA P, et al. Optimizing the application of underbalanced drilling through the use of air and foam systems in low-pressure gas reservoirs[C]//SPE/IADC Middle East Drilling Technology Conference and Exhibition-Abu Dhabi, UAE, 2018.
    [3] GROWCOCK F, SIMON G, REA A, et al. Alternative aphron-based drilling fluid[C]//Society of Petroleum Engineers IADC/SPE Drilling Conference, Dallas, Texas, 2004.
    [4] 姚金星,万里平,高攀明,等.聚合物纳米组装微泡沫钻井液体系及其性能评价[J].石油钻采工艺, 2018, 40:577-581. YAO Jinxing, WAN Liping, GAO Panming, et al.Polymer nano assembly micro foam drilling fluid system and its performance evaluation[J]. Oil Drilling&Production Technology, 2018

    , 40:577-581.
    [5] 赵雄虎,高飞,鄢捷年,等.纳米钻井液材料GY-2室内研究[J].油田化学, 2010, 27:357-359, 365.

    ZHAO Xionghu, GAO Fei, YAN Jienian, et al. Laboratory study on nano drilling fluid material GY-2[J]. Oilfield Chemistry, 2010, 27:357-359, 365.
    [6] 光新军,豆宁辉,贾云鹏,等.纳米技术在石油工程中的应用前景[J].钻采工艺, 2019, 42:34-37, 38.

    GUANG Xinjun, DOU Ninghui, JIA Yunpeng, et al. Application prospect of nanotechnology in petroleum engineering[J]. Drilling&Production Technology, 2019, 42:34-37, 38.
    [7] 彭宝亮,罗健辉,王平美,等.用于低渗透油田调剖的纳米颗粒稳定泡沫体系研究进展[J].油田化学, 2017, 34:745-748. PENG Baoliang, LUO Jianhui, WANG Pingmei, et al. Research progress of nanoparticle stabilized foam system for profile control in low permeability oilfield[J]. Oilfield Chemistry, 2017

    , 34:745-748.
    [8] LAKSHMI M D, RAJPUT G, PANDYA N, et al. Enhanced foam ability and foamst a bility of polyoxyethylene cholesteryl ether in occurrence of ionic surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 551:81-86.
    [9] 赵江玉,蒲万芬,李一波,等.耐高温高盐泡沫体系筛选与性能评价[J].天然气与石油, 2014, 32:65-69. ZHAO Jiangyu, PU Wanfen, LI Yibo, et al. Screening and performance evaluation of high temperature and high salt foam system[J]. Natural Gas and Oil, 2014

    , 32:65-69.
    [10] 赵国玺.表面活性剂化学[M].北京:北京大学出版社, 1984. ZHAO Guoxi. Surfactant chemistry[M]. Beijing, Peking University Press, 1984.
    [11] ZHANG S, LAN Q, LIU Q, et al. Aqueous foams stabilized by Laponite and CTAB[J]. Colloids&Surfaces A Physicochemical&Engineering Aspects, 2008, 317:406-413.
    [12] 孙乾,李兆敏,李松岩,等. SiO2纳米颗粒稳定的泡沫体系驱油性能研究[J].中国石油大学学报(自然科学版), 2014:124-131. SUN Qian, LI Zhaomin, LI Songyan, et al. Study on oil displacement performance of SiO2 nanoparticle stabilized foam system[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014:124-131.
    [13] 黄晋,孙其诚.液态泡沫渗流的机理研究进展[J].力学进展, 2007:269-278. HUANG Jin, SUN Qicheng. Research progress in the mechanism of liquid foam seepage[J]. Advances in Mechanics, 2007:269

    -278.
    [14] 宋水祥,罗溪梅,马鸣泽,等.泡沫稳定性研究进展[J].矿冶, 2019, 28:30-34. SONG Shuixiang, LUO Ximei, MA Mingze, et al. Research progress of foam stability[J]. Mining and Metallurgy, 2019

    , 28:30-34.
    [15] 李莉,张赛,何强,等.响应面法在试验设计与优化中的应用[J].实验室研究与探索, 2015, 34:41-45. LI Li, ZHANG Sai, HE Qiang, et al.Application of response surface methodology in experimental design and optimization[J]. Research and Exploration in Laboratory, 2015

    , 34:41-45.
    [16] BOX G E P, WILSON K B J R. On the experimental attainment optimum conditions[J]. Stat, 1951, 13(1):1-45.
    [17] 李靖嵩,曹静,周明,等. CR052111/APP-4二元泡沫体系的室内研究[J].钻采工艺, 2015, 38:91-94, 96.

    LI Jingsong, CAO Jing, ZHOU Ming, et al. Laboratory study on binary foam system APP-4/CR052111[J]. Drilling&Production Technology, 2015, 38:91-94, 96.
    [18] KHATAEE A R, DEHGHAN G. Optimization of biological treatment of a dye solution by macroalgae Cladophora sp. using response surface methodology[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42:26-33.
    [19] 尹少华,林国,彭金辉,等.响应曲面法优化微波干燥碳酸稀土的实验研究[J].稀有金属, 2016, 40, 350-355. YIN Shaohua, LIN Guo, PENG Jinhui, et al. Experimental study on microwave drying of Rare earth carbonate by response surface methodology[J]. Rare Metals, 2016

    , 40:350-355.
    [20] 李宾飞,黄梦梅,李兆敏,等.泡沫性能综合评价实验设计[J].实验技术与管理, 2017, 34:187-190. LI Binfei, HUANG Mengmei, LI Zhaomin, et al. Experimental design of foam performance comprehensive evaluation[J]. Experimental Technology and Management, 2017

    , 34:187-190.
  • 加载中
计量
  • 文章访问数:  805
  • HTML全文浏览量:  275
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-29
  • 刊出日期:  2020-02-28

目录

    /

    返回文章
    返回