A New High-temperature Tackifier for Solid-free Drilling Fluids
-
摘要: 辽河油区奥陶系潜山油层中部温度高达200℃,地层压力系数仅为1.01~1.06,属于典型的高温低压油气藏。为安全优质钻进与高效保护油气层,亟需自主研发适用于无固相水基钻井液的抗高温增黏剂。通过分子结构优化,以N-乙烯基吡咯烷酮(NVP)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、N’N-二乙基丙烯酰胺(DEAA)、1-(3-磺丙基)-2-乙烯基吡啶氢氧化物内盐为主要原料,N’N-亚甲基双丙烯酰胺(MBA)为交联剂,过硫酸钾和无水亚硫酸氢钠为引发剂,研制出一种抗高温耐盐增黏剂。红外光谱与热重分析表明,其初始分解温度为296.66℃,降解阶段质量损失仅45.96%,性能优于国外同类产品HE300。0.5%浓度水溶液的稠度系数K可达722,增黏效果突出,抗温可达220℃,抗盐可达饱和。现场应用试验表明,该增黏剂抗高温增黏效果突出,为深层高温潜山油气资源钻探开发提供了钻井液技术支持。Abstract: The Ordovician buried-hill reservoir in Liaohe Oilfield exhibits a challenging high-temperature (200℃ at reservoir center) and low-pressure (pressure coefficient 1.01~1.06) environment characteristic of typical high-temperature, low-pressure oil/gas reservoirs. To achieve formation protection, a solids-free water based drilling fluid was prioritized, with tackifier selection being critical. Through molecular structure optimization, a novel high-temperature/salt-resistant tackifier was developed using four monomers: N-vinylpyrrolidone (NVP), 2-acrylamido-2-methylpropane sulfonic acid (AMPS), N'N-diethylacrylamide (DEAA), and 1-(3-sulfopropyl)-2-vinylpyridinium hydroxide inner salt. The synthesis employed N'N-methylene bisacrylamide as crosslinker with potassium persulfate and sodium bisulfite as redox initiators. FTIR and TGA analysis confirmed successful polymerization, demonstrating superior thermal stability with 296.66℃ initial decomposition temperature and only 45.96% mass loss during degradation phase, outperforming commercial HE300. The fluid achieved remarkable rheological performance with 722 consistency coefficient (K) at 0.5% concentration. Laboratory evaluations verified exceptional thermal stability up to 220℃ and saturated salt tolerance. Field applications demonstrated excellent viscosity-enhancing performance and robust durability of this novel tackifier, providing vital technical support for buried-hill reservoir development and high-temperature formation drilling operations.
-
Key words:
- High-temperature resistant /
- Salt-tolerant /
- Tackifier /
- Solid-free drilling fluid /
- Buried hill
-
表 1 GW-Ultra VIS合成实验单体转化率
编号 单体质量/g 产物质量/g 转化率/% 平均转化率/% 1 42.0126 40.8321 97.19 97.45 2 41.0213 97.64 3 40.9658 97.51 表 2 不同浓度GW-Ultra VIS水溶液的黏度、n值和K值
浓度/% AV/mPa·s n K 0.05 1.25 0.74 8 0.1 2.5 0.74 15 0.25 10.0 0.62 138 0.5 25.0 0.51 722 0.75 41.5 0.44 1951 1 58.5 0.43 3092 表 3 增黏剂水溶液流变性能
名称 T/
℃条件 PV/
mPa·sYP/
PaYP/PV/
(Pa/
mPa·s)黏度保
持率/%n K GW-Ultra VIS 热滚前 20 15.0 0.75 100.00 0.49 1238 200 热滚后 18 12.5 0.69 87.14 0.50 945 220 热滚后 15 10.0 0.67 71.43 0.51 722 HE300 热滚前 14 6.5 0.46 100.00 0.60 322 200 热滚后 12 4.0 0.33 78.05 0.68 149 220 热滚后 11 1.5 0.14 60.98 0.84 39 表 4 GW-Ultra VIS水溶液的抗饱和盐污染性能
序号 T热滚/ ℃ 水溶液 条件 AV/mPa·s PV/mPa·s YP/Pa YP/PV/(Pa/mPa·s) 黏度保持率/% 1 / 清水 热滚前 75.0 42 33.0 0.79 / 2 / 饱和盐水 热滚前 53.5 37 16.5 0.45 / 3 200 清水 热滚后 72.0 40 32.0 0.80 96.00 4 200 饱和盐水 热滚后 51.0 34 17.0 0.50 95.33 5 220 饱和盐水 热滚后 44.5 30 14.5 0.48 83.18 6 240 饱和盐水 热滚后 22.0 17 5.0 0.29 41.12 表 5 储层钻开液流变性和滤失性能实验结果
无固相钻井液 实验条件 AV/mPa·s PV/mPa·s YP/Pa YP/PV/(Pa/mPa·s) FLAPI/mL n K 1# 热滚前 32 21 11 0.52 6.5 0.57 614 热滚后 32 22 10 0.45 6.8 0.61 485 2# 热滚前 22 13 9 0.69 5.4 0.51 678 热滚后 18 11 7 0.64 5.6 0.53 480 表 6 1#井现场试验数据
井深/m AV/mPa·s PV/mPa·s YP/Pa YP/PV/(Pa/ mPa·s) φ6/φ3 FLAPI/mL n K 3658 13.0 9 4.0 0.44 2/1 14 0.61 190 3715 13.5 10 3.5 0.35 2/1 9.8 0.67 137 3771 17.0 12 5.0 0.42 2/1 9.6 0.63 224 3803 21.0 15 6.0 0.40 2/1 9.7 0.64 259 3854 22.5 16 6.5 0.41 2/1 9.6 0.63 285 注:0.4%GW-Ultra VIS+3%海泡石+0.5%高温稳定剂+0.1%NaOH。 表 7 2#井现场试验数据
加入时/
hAV/
mPa·sPV/
mPa·sYP/
PaYP/PV/
(Pa/ mPa·s)φ6/φ3 n K 1 34.5 24 10.5 0.44 6/5 0.62 477 2 30.0 21 9.0 0.43 5/4 0.62 413 3 28.5 20 8.5 0.43 5/4 0.62 387 4 22.0 16 6.0 0.38 4/3 0.65 245 注:0.4%GW-Ultra VIS+1.5%GW-FLC+0.1%NaOH+1.5%SMA-sealing+5%甲酸钠+ 5%KCl。 表 8 3#井现场试验数据
井深 AV/mPa·s PV/mPa·s YP/Pa YP/PV/(Pa/ mPa·s) φ6/φ3 FLAPI/mL n K 5720 43.0 36 7.0 0.19 3/2 3.4 0.78 194 5860 49.0 37 12.0 0.32 4/3 2.4 0.68 438 5920 49.0 39 10.0 0.26 4/2.5 2.8 0.73 314 6045 50.5 39 11.5 0.29 4.5/4 2.6 0.70 393 6120 51.5 39 12.5 0.32 4/3 2.8 0.69 452 6210 52.5 39 13.5 0.35 5/4 2.4 0.67 517 注:3%膨润土+0.15%NaOH+0.15%包被剂+0.1%GW-Ultra VIS+2.5%抗高温降滤失剂+2%腐植酸钾+10%NaCl+7%甲酸钠+1.5%纳米封堵剂+3%润滑防塌剂+2%白沥青+2%石墨+1%超细碳酸钙+1%石灰石。 -
[1] 李中. 渤海深层探井钻井关键技术现状及展望[J]. 钻采工艺,2024,47(2):35-41. doi: 10.3969/J.ISSN.1006-768X.2024.02.05LI Zhong. Challenges and technology trends prediction of deep exploration well drilling in bohai sea[J]. Drilling & Production Technology, 2024, 47(2):35-41. doi: 10.3969/J.ISSN.1006-768X.2024.02.05 [2] 闫建丽, 李超, 马栋, 等. 渤海复杂潜山油藏动静态特征识别方法及应用[J]. 油气藏评价与开发,2024,14(2):308-316.YAN Jianli, LI Chao, MA Dong, et al. Dynamic and static feature identification method of complex buried hill reservoirs in Bohai and its application[J]. Reservoir Evaluation and Development, 2024, 14(2):308-316. [3] ZHANG X M, JIANG G C, XUAN Y, et al. Associating copolymer acrylamide/diallyldimethylammonium chloride/butyl acrylate/2-Acrylamido-2-methylpropanesulfonic acid as a tackifier in Clay-Free and Water-Based drilling fluids[J]. Energy & Fuels, 2017, 31(5):4655-4662. [4] GAO Y, WANG X B, CHENG Y, et al. Development and assessment of a Water-Based drilling fluid tackifier with salt and High-Temperature resistance[J]. Crystals, 2025, 15(1):82. doi: 10.3390/cryst15010082 [5] ZHANG G H, FANG M Z, WANG W D, et al. Synthesis of high temperature resistant viscosifier for solid-free water-based drilling fluid[J]. Fresenius Environmental Bulletin, 2020, 29(8):6914-6921. [6] XIE B Q, TING L, ZHANG Y, et al. Rheological properties of bentonite-free water-based drilling fluids with novel polymer viscosifier[J]. Journal of Petroleum Science and Engineering, 2018, 164:302-310. doi: 10.1016/j.petrol.2018.01.074 [7] 倪天姿, 王昌军, 吴宇. 无固相水基钻井液用抗高温增粘提切剂的研究进展[J]. 应用化工,2023,52(4):1157-1163. doi: 10.3969/j.issn.1671-3206.2023.04.037NI Tianzi, WANG Changjun, WU Yu. Research progress of anti-high temperature viscosity raising and cutting agents for solid-free water-based drilling fluids[J]. Applied Chemical Industry, 2023, 52(4):1157-1163. doi: 10.3969/j.issn.1671-3206.2023.04.037 [8] 马海云, 吕双, 颜寒, 等. 页岩油钻井用环保型耐温抗盐增黏剂[J]. 油田化学,2025,42(2):191-197.MA Haiyun, LYU Shuang, YAN Han, et al. Environmentally friendly viscosity enhancer with temperature resistance and salt tolerance for shale oil drilling[J]. Oilfield Chemistry, 2025, 42(2):191-197. [9] 王晓博, 程云, 马诚, 等. 耐盐抗高温水基钻井液增黏剂的合成与性能评价[J]. 应用化工,2024,53(9):2118-2122. doi: 10.3969/j.issn.1671-3206.2024.09.022WANG Xiaobo, CHENG Yun, MA Cheng, et al. Synthesis and performance evaluation of salt and high temperature resistant water-based drilling fluid viscosity enhancers[J]. Applied Chemical Industry, 2024, 53(9):2118-2122. doi: 10.3969/j.issn.1671-3206.2024.09.022 [10] 孙振峰, 杨超, 李杰, 等. 钻井液用高性能增黏剂的研制及性能评价[J]. 钻井液与完井液,2024,41(1):84-91. doi: 10.12358/j.issn.1001-5620.2024.01.009SUN Zhenfeng, YANG Chao, LI Jie, et al. Development and performance evaluation of a high performance drilling fluid viscosifier[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):84-91. doi: 10.12358/j.issn.1001-5620.2024.01.009 [11] 吕开河, 杨鹏, 李建成, 等. 抗高温无黏土相钻井液体系研究与性能评价[J]. 石油钻探技术,2012,40(5):30-34. doi: 10.3969/j.issn.1001-0890.2012.05.007LV Kaihe, YANG Peng, LI Jiancheng, et al. Research and evaluation of Clay-Free drilling fluids with high temperature resistance[J]. Petroleum Drilling Techniques, 2012, 40(5):30-34. doi: 10.3969/j.issn.1001-0890.2012.05.007 [12] 董振华. 抗高温抗盐聚合物增黏剂的研制与性能评价[J]. 油田化学,2021,38(1):29-33.DONG Zhenhua. Development and evaluation of temperature and salt resistant polymer viscosifier[J]. Oilfield Chemistry, 2021, 38(1):29-33. [13] 周静, 张青青, 蒋劲国, 等. FTIR光谱快速鉴别刺梨黄酮的研究[J]. 光谱学与光谱分析,2021,41(10):3045-3050.ZHOU Jing, ZHANG Qingqing, JIANG Jinguo, et al. Study on the rapid identification of flavonoids in chestnut rose (Rosa roxburghii tratt) by FTIR[J]. Spectroscopy and Spectral Analysis, 2021, 41(10):3045-3050. [14] ZHENG C S, LI J T, XUE S, et al. Experimental study on changes in components and pore characteristics of acidified coal treated by organic solvents[J]. Fuel, 2023, 353:129215. doi: 10.1016/j.fuel.2023.129215 [15] ZHOU C X, QI S X, ZHU P, et al. The methylene infrared vibration and dielectric behavior monitored by amide group arrangement for long chain polyamides[J]. Polymer, 2020, 190:122231. doi: 10.1016/j.polymer.2020.122231 [16] ZHOU Y, CHEN J D, ZHANG K, et al. Study on aging performance of modified asphalt binders based on characteristic peaks and molecular weights[J]. Construction and Building Materials, 2019, 225:1077-1085. doi: 10.1016/j.conbuildmat.2019.07.196 [17] ZHAO Y, FAN Q L, LIU Y H, et al. Preparation and application of Amino-Terminated hyperbranched magnetic composites in High-Turbidity water treatment[J]. Molecules, 2023, 28(19):6787. doi: 10.3390/molecules28196787 [18] ZHOU X F, BAI L F, LIU X H, et al. Preparation of halogen-free flame retardant polyacrylonitrile via hydrolyzing and grafting with diphenylphosphinyl chloride[J]. Journal of Macromolecular Science Part A, 2019, 56(12):1097-1103. doi: 10.1080/10601325.2019.1654392 [19] CHEN L, PU Z J, LONG Y, et al. Synthesis and properties of sulfonated poly(arylene ether nitrile)copolymers containing carboxyl groups for Proton-Exchange membrane materials[J]. Journal of Applied Polymer Science, 2014, 131(9):40213. doi: 10.1002/app.40213 [20] ZHENG J, LIU M, ZHANG M X, et al. Effects of pectin on the pasting, rheological, and textural properties of lotus root starch[J]. Starch - Starke, 2019, 71(3/4):1700347. [21] ZHOU Y J, HE Y F, LI Z J, et al. Hole cleaning performance of V-Shaped hole cleaning device in horizontal well drilling: numerical modeling and experiments[J]. Applied Sciences, 2022, 12(10):5141. doi: 10.3390/app12105141 [22] DAS S, BASU T, MAJUMDAR S. Electrostatic-Dominated conformational fluctuations and transition states of phase separation in Charge-Balanced protein polymer[J]. ACS Macro Letters, 2024, 13(1):34-39. doi: 10.1021/acsmacrolett.3c00625 [23] TANG B, HU J, ZHAO Z J, et al. Puncture-resistant hydrogels with high mechanical performance achieved by the supersaturated salt[J]. Materials Horizons, 2025, 12(12):4229-4237. doi: 10.1039/D4MH01862A [24] ZUÑIGA A, DEBBAUDT A, ALBERTENGO L, et al. Synthesis and characterization of N-propyl-N-methylene phosphonic chitosan derivative[J]. Carbohydrate Polymers, 2010, 79(2):475-480. doi: 10.1016/j.carbpol.2009.08.011 [25] ZULFIQAR S, SARWAR M I. Soluble aromatic polyamide bearing sulfone linkages: synthesis and characterization[J]. High Performance Polymers, 2009, 21(1):3-15. doi: 10.1177/0954008308089114 [26] TOLSTOGUZOV V. Thermodynamic considerations of starch functionality in foods[J]. Carbohydrate Polymers, 2003, 51(1):99-111. doi: 10.1016/S0144-8617(02)00171-6 [27] ANTON K, ROBERT P, QIANG W, et al. High-tech functional polymers designed for applications in organicelectronics[J]. Polymer Degradation and Stability, 2017, 145:150-156. doi: 10.1016/j.polymdegradstab.2017.06.009 [28] HOLLINGSWORTH K G, JOHNS M L. Rheo-nuclear magnetic resonance of emulsion systems[J]. Journal of Rheology, 2004, 48(4):787-803. doi: 10.1122/1.1753277 -