Anti-ultra-high Temperature Suspension Stabilizer HPAS for Oil-based Drilling and Completion Fluid and Its Mechanism of Action
-
摘要: 针对目前油基钻完井液在240℃以上高温环境下悬浮稳定性难以维持的难题,基于空间网架结构增强胶体稳定性的原理,以海泡石纤维、正辛基三乙氧基硅烷为原料,经盐酸处理后有机改性,研制出强疏水性悬浮稳定剂HPAS。分别利用红外光谱、热重分析、粒径分析和表面润湿性等对其单体进行表征,分析结果表明改性成功。以HPAS为基础配制的一套高密度油基钻井液在260℃老化后性能保持良好,AV、PV维持在33 mPa·s、27 mPa·s左右,YP保持在4 Pa以上,ES高于800 V,FLHTHP控制在5 mL以下,泥饼厚度小于2 mm;通过沉降稳定性评价发现,在240℃下静置7天无硬沉,开罐状态:玻璃棒自由落体轻松触底,满足现场应用要求;此外,体系在65~240℃、常压~190 MPa的温度压力范围内始终维持YP在4.5 Pa以上,保证了体系良好的悬浮稳定性及携岩能力。为油基钻完井液在深井、超深井及万米深井的进一步应用提供了技术支持。Abstract: Aiming at the problem that the suspension stability of oil-based drilling and completion fluid was difficult to maintain at high temperature above 240℃, based on the principle of enhancing colloidal stability by space grid structure, a strong hydrophobic suspension stabilizer HPAS was developed by using sepiolite fiber and n-octyltriethoxysilane as raw materials and organic modification after hydrochloric acid treatment. The monomer was characterized by infrared spectroscopy, thermogravimetric analysis, particle size analysis and surface wettability, which proved that the modification was successful. A set of high density oil base drilling fluid based on HPAS had good performance after aging at 260℃, its AV and PV were maintained at about 33 mPa·s and 27 mPa·s, the dynamic shear force was maintained above 4 Pa, ES was higher than 800 V, the FLHTHP was controlled below 5 mL, and the mud cake thickness was less than 2 mm. Through the settlement stability evaluation, it was found that there was no hard sink at 240℃ for 7 days, and the open tank state was that the glass rod fell freely and touched the bottom easily, which met the requirements of field application. In addition, the system maintained YP above 4.5 Pa in the temperature and pressure range of 65-240℃ and normal pressure −190 MPa, which ensured the good suspension stability and cuttings carrying capacity of the system. It provided technical support for the further application of oil-based drilling and completion fluid in deep wells, ultra-deep wells and 10,000 meters deep wells.
-
表 1 改性前后海泡石的比表面积
样品 单点法 比表面积/(m2·g−1) BET法 t-Plot法 原矿 1.38 1.42 1.45 HPA 1.72 1.87 2.44 HPAS 1.33 1.46 1.94 表 2 HPAS与多种有机土配伍性评价
有机土 实验条件 AV/
mPa·sPV/
mPa·sYP/
Paφ6/φ3 ES/
V开罐
状态HF-40W 老化前 37.5 25.0 12.5 11/10 1368 260℃、16 h 19.5 19.0 0.5 1/0 861 硬沉 HF-40W+HPAS 老化前 39.0 26.0 13.0 11/10 1441 260℃、16 h 30.5 22.0 8.5 6/5 948 无水无沉 HF-180 老化前 30.5 26.0 4.5 7/6 245 260℃、16 h 18.5 19.0 −0.5 1/0 1543 硬沉 HF-180+HPAS 老化前 30.5 26.5 4.0 7/6 271 260℃、16 h 27.0 21.0 6.0 7/6 1513 无水无沉 LH-OC 老化前 29.5 25.0 4.5 7/6 1346 260℃、16 h 21.0 22.0 −1.0 2/1 1010 硬薄沉 LH-OC+HPAS 老化前 29.5 25.0 4.5 7/6 1314 260℃、16 h 25.0 22.0 3.0 4/3 1159 无水无沉 BP-601 老化前 35.0 29.0 6.0 10/9 1457 260℃、16 h 22.0 21.0 1.0 1/0 1219 2 cm软沉 BP-601+HPAS 老化前 34.5 28.0 6.5 9/8 1168 260℃、16 h 32.5 27.0 5.5 8/7 1127 无水无沉 表 3 不同温度和时间老化后钻井液的流变参数
T/
℃t老化/
hAV/
mPa·sPV/
mPa·sYP/
Paφ6/φ3 ES/
V开罐
状态FLHTHP/
mL泥饼厚度/
mm240 0 32 27 5 8/7 801 40 33.5 28 5.5 10/9 2000+ 无水无沉 4.4 2 88 33 27 6 10/9 2000+ 无水无沉 5 2 260 0 33.5 28 5.5 8/7 1032 40 33.0 26 7.0 9/8 1667 无水无沉 3 1 88 28 24 4 5/4 1704 无水无沉 4 1 表 4 试验组和空白组高温高压流变数据
对比组 T/
℃P/
MPaAV/
mPa·sPV/
mPa·sYP/
Paφ6/φ3 Gel/
Pa/Pa试验组 65 常压 44.5 36..5 8.0 7.4/6.6 7.8/10.4 100 70 53.0 44.0 9.0 8.1/7.4 7.4/8.8 130 100 42.5 35.5 7.0 7.7/6.4 7.2/8.0 150 130 36.0 29.5 6.5 6.6/5.5 5.8/7.0 180 150 34.0 29.0 5.0 6.8/5.8 6.4/6.9 200 170 29.0 23.5 5.5 5.9/5.3 5.7/6.5 220 180 27.0 22.0 5.0 5.7/5.4 5.4/6.2 240 190 25.5 21.0 4.5 5.2/4.6 5.0/5.8 空白组 65 常压 39.5 31.3 8.2 5.6/4.4 5.5/7.8 100 70 12.5 9.3 3.2 1.8/1.6 2.1/3.3 130 100 9.7 8.8 0.9 1.3/0.8 1.4/1.8 150 130 8.6 8.9 −0.3 0.8/0.7 0.7/1.0 180 150 6.9 7.4 −0.5 0.7/0.5 0.6/0.9 200 170 6.2 6.9 −0.7 0.6/0.5 0.4/0.6 220 180 5.2 5.8 −0.6 0.6/0.4 0.5/0.7 240 190 5.0 5.8 −0.8 0.5/0.4 0.4/0.5 表 5 高温高压静置开罐状态
静置条件 编号 开罐状态 静置1 d 静置3 d 静置5 d 静置7 d 静置14 d 220℃/
70 MPa空白组 0.1 cm硬沉
玻璃棒触底0.3 cm硬沉
玻璃棒未触底1 cm硬沉
玻璃棒未触底1 cm硬沉
玻璃棒未触底1 cm硬沉
玻璃棒未触底试验组 无水无沉
玻璃棒触底
弹起靠壁无水无沉
玻璃棒触底
弹起靠壁无水无沉
玻璃棒触底
弹起靠壁无水无沉
玻璃棒触底
弹起靠壁无水无沉
玻璃棒触底
弹起靠壁240℃/
80 MPa试验组 无水无沉
玻璃棒触底
弹起靠壁无水无沉
玻璃棒触底
弹起靠壁1 cm软沉
玻璃棒触底
弹起靠壁2 cm软沉
玻璃棒触底
不弹缓慢靠壁3 cm软沉
玻璃棒未触底 -
[1] 孙金声, 蒋官澄, 贺垠博, 等. 油基钻井液面临的技术难题与挑战[J]. 中国石油大学学报(自然科学版),2023,47(5):76-89.SUN Jinsheng, JIANG Guancheng, HE Yinbo, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5):76-89. [2] 倪晓骁, 史赫, 程荣超, 等. 油基钻井液用改性锂皂石增黏提切剂[J]. 钻井液与完井液,2022,39(2):133-138.NI Xiaoxiao, SHI He, CHENG Rongchao, et al. A modified hectorite viscosifier and gelling agent for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):133-138. [3] 尹达, 吴晓花, 刘锋报, 等. 抗160℃超高密度柴油基钻井液体系[J]. 钻井液与完井液,2019,36(3):280-286.YIN Da, WU Xiaohua, LIU Fengbao, et al. An ultra-high density diesel oil base drilling fluid for use at 160℃[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):280-286. [4] 王中华. 国内钻井液技术进展评述[J]. 石油钻探技术,2019,47(3):95-102.WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3):95-102. [5] JIANG G C, NI X X, YANG L L, et al. Synthesis of superamphiphobic nanofluid as a multi-functional additive in oil-based drilling fluid, especially the stabilization performance on the water/oil interface[J]. Colloids and Surfaces. a, Physicochemical and Engineering Aspects, 2020, 588:124385. doi: 10.1016/j.colsurfa.2019.124385 [6] 王星媛, 陆灯云, 吴正良. 抗220℃高密度油基钻井液的研究与应用[J]. 钻井液与完井液,2020,37(5):550-554,560.WANG Xingyuan, LU Dengyun, WU Zhengliang. Study and application of a high density oil base drilling fluid with high temperature resistance of 220℃[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):550-554,560. [7] 卜海, 孙金声, 王成彪, 等. 超高温钻井液的高温流变性研究[J]. 西南石油大学学报(自然科学版),2012,34(4):122-126.BU Hai, SUN Jinsheng, WANG Chengbiao, et al. Study on the rheological properties of ultra-high temperature drilling fluids[J]. Journal of Southwest Petroleum Universit (Seience & Technology Edition), 2012, 34(4):122-126. [8] 汪海, 王信, 张民立, 等. BH-WEI完井液在迪西1井的应用[J]. 钻井液与完井液,2013,30(4):88-90.WANG Hai, WANG Xin, ZHANG Minli, et al. Application of BH-WEI completion fluid in well Dixi 1[J]. Drilling Fluid & Completion Fluid, 2013, 30(4):88-90. [9] 闫丽丽, 倪晓骁, 张家旗, 等. 纳米材料改善高密度油基钻完井液沉降稳定性的研究及应用[J]. 应用化工,2023,52(1):53-57.YAN Lili, NI Xiaoxiao, ZHANG Jiaqi, et al. Nanoparticles improved the sedimentation stability of high-density oil-based drilling & completion fluids[J]. Applied Chemical Industry, 2023, 52(1):53-57. [10] 郝广业. 抗高温油基钻井液有机土的研制及室内评价[J]. 内蒙古石油化工, 2008, 34(1): 108-110. HAO Guangye. Development and laboratory evaluation of organic so格式已规范, 并经过验证;修改了外文标题, 期;来源地址: il for high temperature resistant oil-based drilling fluid[J]. Inner Mongolia Petrochemical Industry, 2008, 34(1): 108-110. [11] NI X X, SHI H, ZHANG J Q, et al. Modified laponite synthesized with special wettability as a multifunctional additive in oil-based drilling fluids[J]. Journal of Petroleum Science and Engineering, 2023, 220, Part B: 111211. [12] MA C, LI L, YANG Y, et al. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids[C]//2nd International Conference on New Material and Chemical Industry (NMCI2017). Sanya, China: NMCI, 2018: 012106. [13] 孙金声, 朱跃成, 白英睿, 等. 改性热固性树脂研究进展及其在钻井液领域应用前景[J]. 中国石油大学学报(自然科学版),2022,46(2):60-75.SUN Jinsheng, ZHU Yuecheng, BAI Yingrui, et al. Research progress of modified thermosetting resin and its application prospects in field of drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(2):60-75. [14] 鄢捷年. 钻井液工艺学[M]. 东营: 中国石油大学出版社, 2001.YAN Jienian. Drilling fluid technology[M]. Dongying: China University of Petroleum Press, 2001. [15] 王松. 机械挤压对凹凸棒石粘结性能的影响[J]. 中国非金属矿工业导刊,2005(3):23-24. doi: 10.3969/j.issn.1007-9386.2005.03.007WANG Song. Influence of mechanical squeezing on viscidity of attapulgite[J]. China Non-Metallic Mining Industry Herald, 2005(3):23-24. doi: 10.3969/j.issn.1007-9386.2005.03.007 [16] 寇亚浩, 倪晓骁, 黎剑, 等. 有机海泡石在油基钻井液中的应用效果与展望[J]. 应用化工,2024,53(9):2206-2210. doi: 10.3969/j.issn.1671-3206.2024.09.039KOU Yahao, NI Xiaoxiao, LI Jian, et al. Application effect and prospect of organic sepiolite used in oil-based drilling fluid[J]. Applied Chemical Industry, 2024, 53(9):2206-2210. doi: 10.3969/j.issn.1671-3206.2024.09.039 [17] 李静, 雷乾杰, 孟子毅, 等. 微波辅助改性海泡石补强天然橡胶的研究[J]. 橡胶工业,2023,70(7):497-504.LI Jing, LEI Qianjie, MENG Ziyi, et al. Study on NR reinforced by microwave-assisted modified sepiolite[J]. China Rubber Industry, 2023, 70(7):497-504. [18] 陈静. 黏土科学及应用技术[M]. 北京: 科学出版社, 2017.CHEN Jing. Clay science and technology applications[M]. Beijing: Science Press, 2017. -