留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含CO2气藏固井水泥浆早期水化进程及性能影响

邓卓然 刘文超 毕毅 罗阳利 程小伟 梅开元

邓卓然,刘文超,毕毅,等. 含CO2气藏固井水泥浆早期水化进程及性能影响[J]. 钻井液与完井液,2026,43(0):1-8
引用本文: 邓卓然,刘文超,毕毅,等. 含CO2气藏固井水泥浆早期水化进程及性能影响[J]. 钻井液与完井液,2026,43(0):1-8
DENG Zhuoran, LIU Wenchao, BI Yi, et al.Early hydration process of well cement slurries for cementing co2-contained gas reservoirs and factors affecting the performance of the cement slurries[J]. Drilling Fluid & Completion Fluid,2026, 43(0):1-8
Citation: DENG Zhuoran, LIU Wenchao, BI Yi, et al.Early hydration process of well cement slurries for cementing co2-contained gas reservoirs and factors affecting the performance of the cement slurries[J]. Drilling Fluid & Completion Fluid,2026, 43(0):1-8

含CO2气藏固井水泥浆早期水化进程及性能影响

基金项目: 四川省科技厅区域创新合作项目“超临界CO2压裂页岩环境下固井水泥石损伤与自修复研究”(2024YFHZ0156)。
详细信息
    作者简介:

    邓卓然,在读硕士研究生,2001年生,就读于西南石油大学材料工程专业,主要从事固井材料方面的研究。电话15182402609;E-mail:272314914@qq.com

    通讯作者:

    程小伟,教授,博士生导师。E-mail:chengxw@swpu.edu.cn

  • 中图分类号: TE256

Early Hydration Process of Well Cement Slurries for Cementing CO2-Contained Gas Reservoirs and Factors Affecting the Performance of the Cement Slurries

  • 摘要: 在含CO2气藏固井施工中,固井水泥浆与CO2的接触不可避免。CO2接触时间的变化可能会影响水泥早期水化特性及微观结构的发展,严重时甚至可能影响固井质量。该研究通过控制CO2通气时间,系统地考察了水泥早期水化特性及其力学性能与渗透率的变化规律。并采用XRD、TG和SEM等手段分析了水泥早期物相组成及微观结构演变规律。研究表明,随CO2通气时间增加,浆体流动性在初期得到改善后逐渐下降,而凝结时间持续缩短。水化放热曲线显示,CO2处理显著加快了水泥水化进程,并提高了早期累积放热量。然而,随通气时间延长,效果逐渐减弱。抗压强度及渗透率测试结果表明,CO2处理显著提升了水泥早期强度,尤其在通气时间不大于3 min时效果最佳,但随着通气时间的延长,强度和渗透率逐渐下降。XRD、TG及SEM分析表明,CO2处理增加了CaCO3的生成,破坏了Ca(OH)2和C—S—H凝胶组成的包覆结构,加速了水泥颗粒的水化进程。

     

  • 图  1  不同通气时间下水泥浆的流动性

    图  2  不同通气时间下水泥浆的凝结时间

    图  3  CO2不同通气时间下水泥浆体  水化72 h内水化放热情况

    图  4  不同通气时间下水泥石抗压强度

    图  5  不同通气时间下水泥石渗透率变化

    图  6  水化24h内S-0和S-3各水化阶段XRD图谱

    图  7  水化24 h内S-0和S-3各水化阶段DTG图谱

    图  8  水化24 h内S-0和S-3各水化阶段Ca(OH)2及CaCO3含量

    图  9  S-0和S-3在水化1~24 h的微观结构

    图  10  含CO2气藏固井水泥早期微观结构演变机理

  • [1] 范劲, 郭艳, 李茂森, 等. 四川盆地抗CO2污染高密度水基钻井液[J]. 天然气勘探与开发, 2024, 47(4): 99-105.

    FAN Jin, GUO Yan, LI Maosen, et al. High-density water-based drilling fluid with resistance to CO2 contamination and its application to Sichuan Basin[J]. Natural Gas Exploration and Development, 2024, 47(4): 99-105.
    [2] 李文涛. 四川页岩气井碳酸根/碳酸氢根污染问题的处理实践[J]. 钻井液与完井液, 2022, 39(1): 53-58.

    LI Wentao. Study and treatment on carbonate/bicarbonate pollution in shale gas wells in Sichuan[J]. Drilling Fluid & Completion Fluid, 2022, 39(1): 53-58.
    [3] 刘天恩, 贺彦亮, 靳盛, 等. 防H2S和CO2酸性气体腐蚀水泥浆体系研究与应用[J]. 钻井液与完井液, 2014, 31(4): 68-70.

    LIU Tianen, HE Yanliang, JIN Sheng, et al. Research and application of anti-H2S and CO2 acid gas corrosion cement slurry system[J]. Drilling Fluid & Completion Fluid, 2014, 31(4): 68-70.
    [4] KASHEF-HAGHIGHI S, SHAO Y X, GHOSHAL S. Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing[J]. Cement and Concrete Research, 2015, 67: 1-10. doi: 10.1016/j.cemconres.2014.07.020
    [5] CHEN T F, BAI M J, GAO X J. Carbonation curing of cement mortars incorporating carbonated fly ash for performance improvement and CO2 sequestration[J]. Journal of CO2 Utilization, 2021, 51: 101633. doi: 10.1016/j.jcou.2021.101633
    [6] LIPPIATT N, LING T C. Rapid hydration mechanism of carbonic acid and cement[J]. Journal of Building Engineering, 2020, 31: 101357. doi: 10.1016/j.jobe.2020.101357
    [7] LIU L L, JI Y S, GAO F R, et al. Study on high-efficiency CO2 absorption by fresh cement paste[J]. Construction and Building Materials, 2021, 270: 121364. doi: 10.1016/j.conbuildmat.2020.121364
    [8] CAI Y, LIU M, LI M, et al. Study on the properties and eco-sustainability of early-age carbonation cured cement paste with recycled concrete slurry waste substitution[J]. Case Studies in Construction Materials, 2024, 21: e03862. doi: 10.1016/j.cscm.2024.e03862
    [9] YIN K, SHEN P, ZHANG L, et al. Carbonized seawater cement slurries for offshore deep cement mixing: carbonation mechanism, strength enhancement and microstructure evolution[J]. Cement & Concrete Composites, 2024, 154: 105788.
    [10] CUI K, LAU D, ZHANG Y Y, et al. Mechanical properties and mechanism of nano-CaCO3 enhanced sulphoaluminate cement-based reactive powder concrete[J]. Construction and Building Materials, 2021, 309: 125099. doi: 10.1016/j.conbuildmat.2021.125099
    [11] YANG J, PIAO R Z, ZHU C H, et al. Carbonation mechanism and cementation properties of recycled cement paste based on CO2 injection time and pressure[J]. Construction and Building Materials, 2024, 447: 138104. doi: 10.1016/j.conbuildmat.2024.138104
    [12] MONKMAN S, LEE B E J, GRANDFIELD K, et al. The impacts of in-situ carbonate seeding on the early hydration of tricalcium silicate[J]. Cement and Concrete Research, 2020, 136: 106179. doi: 10.1016/j.cemconres.2020.106179
    [13] MA M T, MEHDIZADEH H, GUO M Z, et al. Effect of direct carbonation routes of basic oxygen furnace slag (BOFS) on strength and hydration of blended cement paste[J]. Construction and Building Materials, 2021, 304: 124628. doi: 10.1016/j.conbuildmat.2021.124628
    [14] JIANG Y, LING T C. Production of artificial aggregates from steel-making slag: Influences of accelerated carbonation during granulation and/or post-curing[J]. Journal of CO2 Utilization, 2020, 36: 135-144. doi: 10.1016/j.jcou.2019.11.009
    [15] SCHERB S, MAIER M, BEUNTNER N, et al. Reaction kinetics during early hydration of calcined phyllosilicates in clinker-free model systems[J]. Cement and Concrete Research, 2021, 143: 106382. doi: 10.1016/j.cemconres.2021.106382
  • 加载中
图(10)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-06
  • 修回日期:  2025-08-28
  • 网络出版日期:  2025-11-04

目录

    /

    返回文章
    返回

    尊敬的作者、读者:

    您好!

    为更好地服务于广大作者和读者,提升期刊编辑部的办公效率和服务质量,本刊编辑部办公地点及联系电话已进行变更。

    新办公地址:天津经济技术开发区第二大街83号中国石油天津大厦A517房间

    新联系电话:022-65278734

    我们衷心希望广大作者和读者能够继续支持我们的工作,共同推动期刊的发展和进步。

    再次感谢您对期刊的关注和支持!