Flow Characteristics of Dual-Increasing Stimulation Slurry in Unconsolidated Silty Sandstone
-
摘要: 双增改造浆液是一种针对海底富含甲烷水合物泥质粉砂岩等弱胶结储层的新型改造工作液,注入地层后固结形成多孔浆脉具有增渗增强的作用。利用浆液裂缝流动可视化实验装置,开展了泥质粉砂沉积物内浆液流动特征实验。揭示了地质参数、浆液配方及工程参数对浆液流动、滤失及浆脉孔隙的影响规律。研究结果表明:浆液在裂缝内流动均匀,呈现凸状流形,能流动至主裂缝与分支裂缝末端,对裂缝填充效果好;较少的滤失量提高了浆脉内中大孔的占比;针对不同渗透性地层可通过配方调整减少浆液滤失,高注入速率导致滤失范围扩大;浆脉有效孔隙度在50%~60%之间,孔隙空间分布均匀,形成了以大孔(孔径>50 nm)为主,微中孔(孔径<50 nm)密集分布的形式,可作为气、水运移的高导流通道,中小孔的密集分布有利于防砂。Abstract: The dual-increasing stimulation slurry is a novel stimulation fluid developed for weakly cemented reservoirs, such as submarine methane-hydrate-bearing silty sandstones. After injection into the formation, it consolidates to form porous-media slurry veins that enhance permeability. This study employed a slurry fracture flow visualization apparatus to investigate the flow characteristics of the slurry within muddy silty sediments. The experiments revealed the influence of geological parameters, slurry formulation, and operational parameters on slurry flow, fluid loss, and slurry-vein porosity. The results indicate that the slurry flows uniformly and exhibits a convex fracture flow profile, flowing to the end of main fracture and branch fracture, effectively filling fractures. Lower fluid loss increases the proportion of medium-to-large pores within the slurry veins. Adjusting the slurry formulation can reduce fluid loss in formations of varying permeability, whereas a high injection rate expands the fluid loss zone. The effective porosity ranges from 50% to 60% with a uniformly distributed pore space, forming a structure dominated by large pores (pore diameter > 50 nm) and densely distributed micro- to mesopores (pore diameter < 50 nm). This pore network can serve as high-conductivity channels for gas and water migration, while the dense distribution of small and medium pores is conducive to sand control.
-
表 1 双增改造浆液裂缝流动特征实验参数
组别 沉积物性质 分支
角度/°浆液黏
度/mPa·s裂缝开
度/mm注浆速率/
mL/min孔隙度/
%含水饱
和度/%1 42 60 90 137 3 300 2 42 70 90 137 3 300 3 42 80 90 137 3 300 4 42 90 90 137 3 300 5 42 60 90 190 3 300 6 42 60 90 400 3 300 7 42 60 90 137 3 100 8 42 60 90 137 3 150 9 42 60 90 137 3 200 10 42 60 90 137 3 250 11 42 60 30 137 5 300 12 42 60 60 137 5 300 13 42 60 90 137 5 300 14 42 60 120 137 5 300 -
[1] 谭富荣, 耿庆明, 刘世明, 等. 天然气水合物含油气系统研究现状与展望[J]. 特种油气藏,2021,28(1):1-9. doi: 10.3969/j.issn.1006-6535.2021.01.001TAN Furong, GENG Qingming, LIU Shiming, et al. Research status and prospect of natural gas hydrate petroleum system[J]. Special Oil & Gas Reservoirs, 2021, 28(1):1-9. doi: 10.3969/j.issn.1006-6535.2021.01.001 [2] SLOAN Jr E D, KOH C A, KOH C A. Clathrate hydrates of natural gases[M]. 3ird Edition Boca Raton: CRC Press, 2007. [3] CHONG Z R, YANG S H B, BABU P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 2016, 162:1633-1652. doi: 10.1016/j.apenergy.2014.12.061 [4] 李宁, 孙文杰, 李心童, 等. 天然气水合物饱和度测井解释模型及方程[J]. 石油勘探与开发,2022,49(6):1073-1079. doi: 10.11698/PED.20220449LI Ning, SUN Wenjie, LI Xintong, et al. Gas hydrate saturation model and equation for logging interpretation[J]. Petroleum Exploration and Development, 2022, 49(6):1073-1079. doi: 10.11698/PED.20220449 [5] YAN C A, CHENG Y F, LI M L, et al. Mechanical experiments and constitutive model of natural gas hydrate reservoirs[J]. International Journal of Hydrogen Energy, 2017, 42(31):19810-19818. doi: 10.1016/j.ijhydene.2017.06.135 [6] 庞雄奇, 贾承造, 徐帜, 等. 全油气系统理论在全球天然气水合物资源评价中的应用[J]. 石油勘探与开发,2025,52(2):267-278. doi: 10.11698/PED.20240055PANG Xiongqi, JIA Chengzao, XU Zhi, et al. Application of the whole petroleum system in the evaluation of the global natural gas hydrate resource[J]. Petroleum Exploration and Development, 2025, 52(2):267-278. doi: 10.11698/PED.20240055 [7] 邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发,2018,45(4):575-587. doi: 10.11698/PED.2018.04.04ZOU Caineng, YANG Zhi, HE Dongbo, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4):575-587. doi: 10.11698/PED.2018.04.04 [8] MORIDIS G J, SLOAN E D. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments[J]. Energy Conversion and Management, 2007, 48(6):1834-1849. doi: 10.1016/j.enconman.2007.01.023 [9] BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy & Environmental Science, 2011, 4(4):1206-1215. [10] YE J L, QIN X W, XIE W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2):197-209. doi: 10.31035/cg2020043 [11] WANG X C, SUN Y H, CHEN H K, et al. Experimental study on the depressurization of methane hydrate in the clayey silt sediments via hydraulic fracturing[J]. Energy & Fuels, 2023, 37(6):4377-4390. [12] YANG L, SHI F K, YANG J. Experimental studies on hydraulic fracturing in hydrate sediment[J]. Chemistry and Technology of Fuels and Oils, 2020, 56(1):107-114. doi: 10.1007/s10553-020-01116-8 [13] 马晓龙. 泥质粉砂型水合物储层水力压裂数值模拟及实验研究[D]. 长春: 吉林大学, 2021.MA Xiaolong. Numerical simulation and experimental study on hydraulic fracturing of clayey silt hydrate reservoir[D]. Changchun: Jilin University, 2021. [14] LIU J X, YU Y P, LI B, et al. Analysis of 3D hydraulic fracture morphology and fracture critical parameters in Hydrate-Bearing sediments in the South China sea using extended finite elements[J]. Energy & Fuels, 2024, 38(1):314-332. [15] LIU J X, YU Y P, MA X L, et al. Analysis of near-well hydraulic fracture propagation behavior in inhomogeneous deep-sea hydrate-bearing-sediments[J]. Geoenergy Science and Engineering, 2024, 242:213259. doi: 10.1016/j.geoen.2024.213259 [16] YU Y P, LIU J X, LI B, et al. Analysis of the hydraulic fracturing mechanism and fracture propagation law with a new extended finite element model for the silty hydrate reservoir in the South China Sea[J]. Journal of Natural Gas Science and Engineering, 2022, 101:104535. doi: 10.1016/j.jngse.2022.104535 [17] 卢聪, 郭建春, 王文耀, 等. 支撑剂嵌入及对裂缝导流能力损害的实验[J]. 天然气工业,2008,28(2):99-101. doi: 10.3787/j.issn.1000-0976.2008.02.028LU Cong, GUO Jianchun, WANG Wenyao, et al. Experimental research on proppant embedment and its damage to fractures conductivity[J]. Natural Gas Industry, 2008, 28(2):99-101. doi: 10.3787/j.issn.1000-0976.2008.02.028 [18] 孙友宏, 沈奕锋, 张国彪, 等. 海底水合物储层双增改造浆液及其固结体性能[J]. 中国石油大学学报(自然科学版),2022,46(6):1-10.SUN Youhong, SHEN Yifeng, ZHANG Guobiao, et al. Performance of dual-increasing stimulation slurry and its consolidating body for submarine hydrate reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(6):1-10. [19] 叶飞, 夏天晗, 应凯臣, 等. 盾构隧道壁后注浆浆液与地层适配性优选方法[J]. 岩土工程学报,2022,44(12):2225-2233. doi: 10.11779/CJGE202212009YE Fei, XIA Tianhan, YING Kaichen, et al. Optimization method for backfill grouting of shield tunnel based on stratum suitability characteristics[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12):2225-2233. doi: 10.11779/CJGE202212009 [20] 张嘉凡, 孙晓东, 刘洋, 等. 倾斜裂隙动水注浆扩散规律及堵水关键域研究[J]. 煤炭学报,2023,48(S2):575-588.ZHANG Jiafan, SUN Xiaodong, LIU Yang, et al. Study on diffusion law of dynamic water grouting in inclined fracture and key areas of water plugging[J]. Journal of China Coal Society, 2023, 48(S2):575-588. [21] DRAGANOVIĆ A, STILLE H. Filtration and penetrability of cement-based grout: Study performed with a short slot[J]. Tunnelling and Underground Space Technology, 2011, 26(4):548-559. doi: 10.1016/j.tust.2011.02.007 [22] 周军霞, 张学奇, 牛佳斌, 等. 改性超细水泥基注浆材料裂隙注浆扩散规律研究[J]. 辽宁工程技术大学学报(自然科学版),2024,43(6):671-681.ZHOU Junxia, ZHANG Xueqi, NIU Jiabin, et al. Study on crack grouting diffusion law of modified ultrafine cement-based grouting material[J]. Journal of Liaoning Technical University(Natural Science Edition), 2024, 43(6):671-681. [23] QI Y, SUN Y H, LI B, et al. Novel dual-enhanced stimulation for safe and efficient Marine hydrate production[J]. Petroleum Science, 2025, 22(2):805-820. doi: 10.1016/j.petsci.2024.11.010 [24] 沈云琦, 李凤霞, 张岩, 等. 复杂裂缝网络内支撑剂运移及铺置规律分析[J]. 油气地质与采收率,2020,27(5):134-142.SHEN Yunqi, LI Fengxia, ZHANG Yan, et al. Analysis of proppant migration and layout in complex fracture network[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5):134-142. [25] 何思源. 复杂裂缝支撑剂输运规律模拟研究[D]. 成都: 西南石油大学, 2019.HE Siyuan. Simulation study on transport law of proppant in complex fractures[D]. Chengdu: Southwest Petroleum University, 2019. [26] LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1):5-16. doi: 10.31035/cg2018003 [27] 董林, 廖华林, 李彦龙, 等. 天然气水合物沉积物力学性质测试与评价[J]. 海洋地质前沿,2020,36(9):34-43.DONG Lin, LIAO Hualin, LI Yanlong, et al. Measurement and assessment of mechanical properties of hydrate-bearing sediments[J]. Marine Geology Frontiers, 2020, 36(9):34-43. [28] ZHAO Y P, HU G W, LIU L L, et al. Mechanical properties of gas hydrate-bearing sediments: Research progress, challenges and perspectives[J]. Earth-Science Reviews, 2025, 262:105058. doi: 10.1016/j.earscirev.2025.105058 [29] 郝希宁, 汪志明, 薛亮, 等. 泥浆帽控压钻井裂缝漏失规律[J]. 石油钻采工艺,2009,31(5):48-51. doi: 10.3969/j.issn.1000-7393.2009.05.012HAO Xining, WANG Zhiming, XUE Liang, et al. Study on lost circulation methods in mud cap managed pressure drilling[J]. Oil Drilling & Production Technology, 2009, 31(5):48-51. doi: 10.3969/j.issn.1000-7393.2009.05.012 [30] 吴迪, 周顺华, 李尧臣. 饱和砂土中泥浆渗透的变形-渗流-扩散耦合计算模型[J]. 力学学报[J],2015,47(6):1026-1036.WU Di, ZHOU Shunhua, LI Yaochen. A deformation-infiltration-dispersion coupling model for the slurry infiltration computation in saturated sand[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):1026-1036. [31] 姚军朋, 司马立强. 合川地区低孔低渗砂岩储层含水饱和度的评价方法[J]. 天然气工业,2010,30(10):22-25. doi: 10.3787/j.issn.1000-0976.2010.10.005YAO Junpeng, SI MA Liqiang. Evaluation methods for water saturation of low porosity and low permeability sandstone reservoirs in the Hechuan area, middle Sichuan Basin[J]. Natural Gas Industry, 2010, 30(10):22-25. doi: 10.3787/j.issn.1000-0976.2010.10.005 [32] ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids(Technical Report)[J]. Pure and Applied Chemistry, 1994, 66(8):1739-1758. doi: 10.1351/pac199466081739 [33] 傅旭. 基于低粘度浆液在粉细砂地层的扩散规律的工程应用研究[D]. 太原: 太原理工大学, 2021.FU Xu. Engineering application research based on diffusion law of low viscosity slurry in fine sand formation[D]. Taiyuan: Taiyuan University of Technology, 2021. [34] 范铁刚, 张广清. 注液速率及压裂液黏度对煤层水力裂缝形态的影响[J]. 中国石油大学学报(自然科学版),2014,38(4):117-123.FAN Tiegang, ZHANG Guangqing. Influence of injection rate and fracturing fluid viscosity on hydraulic fracture geometry in coal[J]. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38(4):117-123. [35] 张改玲. 裂隙注浆偏流机理及帷幕体采动效应研究综述与展望[J]. 工程地质学报,2022,30(3):987-997.ZHANG Gailing. Mechanism of deflection propagation for grouting in fractured rock mass with flowing water and mining effect on grouted curtain: a review[J]. Journal of Engineering Geology, 2022, 30(3):987-997. [36] ZUO L, LI X L, HAN Z X, et al. Numerical simulation of proppant transport in major and branching fractures based on CFD-DEM[J]. ACS Omega, 2024, 9(11):13163-13171. -