留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

累积工况下CO2对稠油热采水泥石的修复作用

成涛 刘鹏超 欧志鹏 熊鑫

成涛,刘鹏超,欧志鹏,等. 累积工况下CO2对稠油热采水泥石的修复作用[J]. 钻井液与完井液,2021,38(5):628-633 doi: 10.3969/j.issn.1001-5620.2021.05.014
引用本文: 成涛,刘鹏超,欧志鹏,等. 累积工况下CO2对稠油热采水泥石的修复作用[J]. 钻井液与完井液,2021,38(5):628-633 doi: 10.3969/j.issn.1001-5620.2021.05.014
CHENG Tao, LIU Pengchao, OU Zhipeng, et al.Remediation of set cement in heavy oil thermal production wells with CO2 under cumulative working conditions[J]. Drilling Fluid & Completion Fluid,2021, 38(5):628-633 doi: 10.3969/j.issn.1001-5620.2021.05.014
Citation: CHENG Tao, LIU Pengchao, OU Zhipeng, et al.Remediation of set cement in heavy oil thermal production wells with CO2 under cumulative working conditions[J]. Drilling Fluid & Completion Fluid,2021, 38(5):628-633 doi: 10.3969/j.issn.1001-5620.2021.05.014

累积工况下CO2对稠油热采水泥石的修复作用

doi: 10.3969/j.issn.1001-5620.2021.05.014
基金项目: 国家自然科学基金青年基金项目“致密油储层岩石注水吞吐实验与多尺度动态网络模拟研究”(41902157);西南石油大学科研“启航计划”“致密油藏岩石逆向渗吸实验与多尺度动态网络模拟研究”(2018QHZ002);中国博士后科学基金面上项目“致密油储层岩石渗吸实验与动态网络模拟研究”(2018M633632XB)
详细信息
    作者简介:

    成涛,高级工程师,1969年生,毕业于西南石油学院油藏工程专业,主要从事油气田开发工作。E-mail:chengt@cnooc.com.cn

  • 中图分类号: TE256.6

Remediation of Set Cement in Heavy Oil Thermal Production Wells with CO2 under Cumulative Working Conditions

  • 摘要: 根据稠油火烧水泥石在井下先经历蒸汽吞吐、蒸汽驱,再经历稠油火烧的实际工况,利用超高温水泥石养护装置及高温高压腐蚀釜,研究累积工况下CO2对水泥石抗压强度及腐蚀深度的变化规律;同时,利用XRD和SEM等技术探明了CO2对水泥石化学结构及微观形貌的影响。实验结果表明,水泥石经常温及高温养护后呈现高孔渗、低强度的特征,但累积工况下经CO2腐蚀釜养护后,抗压强度不减反增,到28 d时已升至53.4 MPa,较蒸汽驱后提高了54.87%;而随着CO2腐蚀龄期的延长,水泥石腐蚀深度逐渐加深,结构更为致密,且28 d后已被完全碳化。究其原因,水泥石经CO2腐蚀后,腐蚀产物CaCO3溶解度较低,并在孔隙中沉淀结晶,堵塞毛细孔或将大孔分割成小孔,使水泥颗粒密实度提高。该研究结果可进一步丰富业界对CO2腐蚀的认识,同时也为稠油火烧水泥浆体系的性能评价、配方优化提供参考。

     

  • 图  1  超高温水湿模拟养护装置

    图  2  水泥石养护温度制度

    图  3  CO2与水泥石内部反应区域划分

    图  4  水泥石腐蚀前后酚酞滴定实验

    图  5  累积工况下水泥石抗压强度测试结果

    图  6  腐蚀前后水泥石X射线衍射图

    图  7  腐蚀前后水泥石微观结构

  • [1] LIU K, CHENG X, MA Y, et al. Analysis of interfacial nanostructure and interaction mechanisms between cellulose fibres and calcium silicate hydrates using experimental and molecular dynamics simulation data[J]. Applied Surface Science, 2020:506.
    [2] CAREY J W. Geochemistry of wellbore integrity in CO2 sequestration: Portland cement-steel-brine-CO2 interactions[J]. Reviews in Mineralogy and Geochemistry, 2013, 77:505-539. doi: 10.2138/rmg.2013.77.15
    [3] LIAUDAT J, MARTíNEZ A, LóPEZ C M, et al. Modelling acid attack of oilwell cement exposed to carbonated brine[J]. International Journal of Greenhouse Gas Control, 2018, 68:191-202. doi: 10.1016/j.ijggc.2017.11.015
    [4] 张明亮. 火烧油层工况下固井水泥材料及耐高温耐腐蚀性能研究[D]. 成都: 西南石油大学, 2017.

    ZHANG Mingliang. Study on cementing cement materials and high temperature and corrosion resistance under the condition of burning oil reservoir[D]. Chengdu: Southwest Petroleum University, 2017.
    [5] 程小伟,张明亮,李早元,等. 火烧油层工况下加砂油井水泥石失效演化研究[J]. 硅酸盐通报,2016,35(8):2335-2340.

    CHENG Xiaowei, ZHANG Mingliang, LI Zhaoyuan, et al. Study on the failure evolution of cement stone in sand adding oil well under the condition of burning oil reservoir[J]. Silicate Bulletin, 2016, 35(8):2335-2340.
    [6] HUANG S, CHEN X, LIU H, et al. Experimental and numerical study of steam-chamber evolution during solvent-enhanced steam flooding in thin heavy-oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 172:776-786. doi: 10.1016/j.petrol.2018.08.071
    [7] HUANG S, CHEN X, LIU H, et al. Experimental and numerical study of solvent optimization during horizontal-well solvent-enhanced steam flooding in thin heavy-oil reservoirs[J]. Fuel, 2018, 228:379-389. doi: 10.1016/j.fuel.2018.05.001
    [8] LYU X, LIU H, PANG Z, et al. Visualized study of thermochemistry assisted steam flooding to improve oil recovery in heavy oil reservoir with glass micromodels[J]. Fuel, 2018, 218:118-126. doi: 10.1016/j.fuel.2018.01.007
    [9] SARIDEMIR M, SEVERCAN M H, ÇIFLIKLI M, et al. Microstructural analyses of high strength concretes containing metakaolin at high temperatures[J]. International Journal of Cilil Engineering, 2017, 15:273-285.
    [10] KATHIRVEL P, KWON S J, LEE H S, et al. Graphite ore tailings as partial replacement of sand in concrete[J]. ACI Materials Journal, 2018, 115(3):481-492.
    [11] 中国石油集团工程技术研究院. GB/T 19139—2012油井水泥试验方法[S]. 北京: 中国标准出版社, 2012.

    CNPC Engineering Technology Research Institute. Procedure for testing well cements[S]. Beijing: China Standard Press, 2012.
    [12] MASON H E, FRANE W, WALSH S, et al. Chemical and mechanical properties of wellbore cement altered by CO2-rich brine using a multianalytical approach[J]. Environmental Science & Technology, 2013, 47(3):1745-1752.
    [13] LESTI M, TIEMEYER C, PLANK J. CO2 stability of portland cement based well cementing systems for use on carbon capture & storage (CCS) wells[J]. Cement and Concrete Research, 2013, 45:45-54. doi: 10.1016/j.cemconres.2012.12.001
    [14] 张亮,姚晓,罗霄,等. 提高油井水泥石抗CO2腐蚀外掺料的性能[J]. 石油钻探技术,2010,38(4):15-18.

    ZHANG Liang, YAO Xiao, LUO Xiao, et al. Improving the performance of oil well cement admixture resistant to CO2 Corrosion[J]. Petroleum Drilling Technology, 2010, 38(4):15-18.
    [15] 韩冀豫. 高掺量粉煤灰水泥水化产物C—S—H凝胶聚合程度的研究[D]. 武汉理工大学, 2011.

    HAN Jiyu. Study on the degree of C—S—H gel polymerization of hydration products of high content fly ash cement[D]. Wuhan University of Technology, 2011.
    [16] WIGAND M, KASZUBA J P, CAREY J, et al. Geochemical effects of CO2 sequestration on fractured wellbore cement at the cement/caprock interface[J]. Chemical Geology, 2010, 262(2):122-133.
  • 加载中
图(7)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  183
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-02
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回