留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

何淼, 施皓瀚, 许明标. 水基钻井液高温高压流变动力学研究[J]. 钻井液与完井液, 2021, 38(3): 271-279. doi: 10.3969/j.issn.1001-5620.2021.03.002
引用本文: 何淼, 施皓瀚, 许明标. 水基钻井液高温高压流变动力学研究[J]. 钻井液与完井液, 2021, 38(3): 271-279. doi: 10.3969/j.issn.1001-5620.2021.03.002
HE Miao, SHI Haohan, XU Mingbiao. Study of Rheological Dynamics of Water-Based Drilling Fluids at High Temperature and High Pressure[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(3): 271-279. doi: 10.3969/j.issn.1001-5620.2021.03.002
Citation: HE Miao, SHI Haohan, XU Mingbiao. Study of Rheological Dynamics of Water-Based Drilling Fluids at High Temperature and High Pressure[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(3): 271-279. doi: 10.3969/j.issn.1001-5620.2021.03.002

水基钻井液高温高压流变动力学研究

doi: 10.3969/j.issn.1001-5620.2021.03.002
详细信息
    作者简介:
  • 中图分类号: TE254.1

Study of Rheological Dynamics of Water-Based Drilling Fluids at High Temperature and High Pressure

  • 摘要: 钻井液性能受深井超深井高温高压的影响会产生较大变化,为确保安全高效钻井作业,必须准确掌握钻井液在井底高温高压条件下的流变行为。针对一类典型的抗高温聚磺水基钻井液,开展了广域温压(~180℃,~100 MPa)下流变性能评价研究,定量评价了其流变参数随温度压力的变化规律。结果表明:聚磺水基钻井液流变参数受压力的影响明显小于温度的影响;在温压组合条件下,钻井液流变模式拟合效果排序为:赫-巴>罗-斯>宾汉>卡森>幂律。以赫-巴模式为基础,采用直接拟合方法从(T,P)、(T,1/P)、(T,lnP)、(1/T,P)、(1/T,1/P)、(1/T,lnP)、(lnT,P)、(lnT,1/P)、(lnT,lnP)9种组合中构建了其流变参数随温压变化的最佳拟合方程,建立了聚磺水基钻井液高温高压流变动力学预测模型,模型预测精度高,相对误差率98%集中在-7.15%~11.46%之间,平均误差仅为1.03%。

     

  • [1] 张功成,屈红军,赵冲,等. 全球深水油气勘探40年大发现及未来勘探前景[J]. 天然气地球科学,2017, 28(10):1447-1477.

    ZHANG Gongcheng, QU Hongjun, ZHAO Chong, et al. Giant discoveries of oil and gas exploration in global deepwaters in 40 years and the prospect of exploration[J]. CNOOC Research Center Department of Geology,2017, 28(10):1447-1477.
    [2] MCMORDIE W C, BENNETT R B, BLAND R G. The effect of temperature and pressure on the viscosity of oilbase muds[J]. Journal of Petroleum Technology,1975, 27(7):884-886.
    [3] 鄢捷年,赵雄虎.高温高压下油基钻井液的流变特性[J]. 石油学报,2003,24(3):104-109.

    YAN Jienian,ZHAO Xionghu. Rheological properties of oil_based drilling fluids at high temperature and high pressure[J].Acta Petrolei Sinica,2003,24(3):104-109.
    [4] SHERIF T, AHMED R, SHAH S, et al. Rheological behavior of oil-based drilling foams[J]. Journal of Natural Gas Science and Engineering,2015,26:873-882.
    [5] FAN H, ZHOU H, MENG X, et al. Accurate prediction model for rheological properties of drilling fluids at high temperature and high pressure conditions[C]. SPE 176263, 2015.
    [6] 刘震寰. 超高密度高温钻井液体系与流变性调控机理研究[D]. 中国石油大学(华东), 2008. LIU Zhenhuan. Study on ultra-high density and high temperature drilling fluid and rheological control mechanism[D]. China University of Petroleum(East China), 2008.
    [7] AMANI M, ALJUBOURI M J. An experimental investigation of the effects of ultra high pressures and temperatures on the rheological properties of water-based drilling fluids[C]. SPE 157219, 2012.
    [8] WILLIAM J K M, PONMANI S, SAMUEL R, et al. Effect of CuO and ZnO nanofluids in xanthan gum on thermal, electrical and high pressure rheology of waterbased drilling fluids[J]. Journal of Petroleum Science and Engineering, 2014, 117:15-27.
    [9] 许洁. 超高温水基钻井液技术及其流变模型研究[D]. 中国地质大学, 2015. XU Jie. Research on ultra-high temperature waterbased drilling fluid and its rheological model[D]. China University of Geosciences, 2015.
    [10] 高涵,许林,许明标,等. 深水水基恒流变钻井液流变特性研究[J]. 钻井液与完井液, 2018, 35(3):60-67.

    GAO Han, XU Lin, XU Mingbiao, et al. Study on rheology of consistent rheology water base drilling fluid for deep water drilling[J]. Drilling Fluid & Completion Fluid, 2018, 35(3):60-67.
    [11] 高禹,孙宝江,陈野,等. 油基钻井液高温高压流变性实验研究[C]. 2019国际石油石化技术会议,2019. GAO Yu, SUN Baojiang, Chen Ye, et al. Experimental study on high temperature and high pressure rheological properties of oil-based drilling fluid[C]. 2019 International Petroleum & Petrochemical Technology Conference, 2019.
    [12] ZISIS V, VASSILIOS C K, LORI N, et al. Effect of temperature on the rheological properties of neat aqueous Wyoming sodium bentonite dispersions[J]. Applied Clay Science,2017,136:26-36.
    [13] KHAMEHCHI E, TABIBZADEH S, ALIZADEH A. Rheological properties of aphron based drilling fluids[J]. Petroleum Exploration and Development,2016,43(6):1076-1081.
    [14] 王中华. 国内外超高温高密度钻井液技术现状与发展趋势[J]. 石油钻探技术, 2011, 39(2):1-7.

    WANG Zhonghua. Status and development trend of ultrahigh temperature and high density drilling fluid at home and abroad[J]. Petroleum Drilling Techniques,2011, 39(2):1-7.
    [15] 李琪,王再兴,沈黎阳,等. 基于改进黄金分割法的钻井液流变模式优选[J]. 钻井液与完井液,2016,33(1):57-62.

    LI Qi, WANG Zai xing, SHEN Liyang, et al. Optimization of drilling fluid Rheological pattern using improved Golden section method[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):57-62.
    [16] XU L, HUANG Y, CHENG X H, et al. Comparative investigations into dynamic rheological modeling of the water-based drilling fluid under HTHP conditions[J]. Journal of Computational Methods in Sciences and Engineering,2018,18(3):801-817.
  • 加载中
计量
  • 文章访问数:  62
  • HTML全文浏览量:  14
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-31

目录

    /

    返回文章
    返回