留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

李立宗, 苏俊霖, 赵洋, 左富银. 高温高压下蒙脱石水化特性的分子模拟[J]. 钻井液与完井液, 2021, 38(3): 265-270. doi: 10.3969/j.issn.1001-5620.2021.03.001
引用本文: 李立宗, 苏俊霖, 赵洋, 左富银. 高温高压下蒙脱石水化特性的分子模拟[J]. 钻井液与完井液, 2021, 38(3): 265-270. doi: 10.3969/j.issn.1001-5620.2021.03.001
LI Lizong, SU Junlin, ZHAO Yang, ZUO Fuyin. Molecular Simulation of the Hydration of Montmorillonite under High-temperature and Highpressure[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(3): 265-270. doi: 10.3969/j.issn.1001-5620.2021.03.001
Citation: LI Lizong, SU Junlin, ZHAO Yang, ZUO Fuyin. Molecular Simulation of the Hydration of Montmorillonite under High-temperature and Highpressure[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(3): 265-270. doi: 10.3969/j.issn.1001-5620.2021.03.001

高温高压下蒙脱石水化特性的分子模拟

doi: 10.3969/j.issn.1001-5620.2021.03.001
详细信息
    作者简介:
  • 中图分类号: TE254

Molecular Simulation of the Hydration of Montmorillonite under High-temperature and Highpressure

  • 摘要: 页岩中黏土矿物的水化膨胀是影响页岩气井井壁稳定性的一个重要因素,蒙脱石作为黏土矿物的主要成分,其水化机理对于解决页岩气井井壁失稳问题至关重要。为了深入探索高温高压地层环境下蒙脱石的水化机理,利用分子模拟软件从微观角度研究了不同水化程度的蒙脱石在不同温度压力条件下的晶层间距、晶层间物质的移动规律、离子水化参数以及力学参数的变化。研究结果表明:温度增加、压力降低时,蒙脱石层间距随之增加,且温度对层间距的影响较大,层间距范围在1.823~2.042 nm之间;层间水分子和钠离子的扩散速率随温度增加而加快,随压力升高而减慢;低温高压时钠离子的水化配位数较大,配位数范围在2.35~4.35之间;温度增加时,蒙脱石晶体的体积模量、剪切模量以及弹性模量随之减小,泊松比随之增加,而压力对蒙脱石晶体力学参数的影响却恰恰相反。可见,本文的研究结果对于高温高压地层环境下页岩地层水化机理的研究具有重要的理论指导意义。

     

  • [1] 邓虎. 裂缝性泥页岩的水化稳定性研究及其应用[D]. 成都:西南石油学院,2004.

    DENG Hu. Study on hydration stability of fractured shale and its application[D]. Chengdu:Southwest petroleum College,2004.
    [2] SKIPPER N T,SPOSITO G,CHANG F R C. Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 2. monolayer hydrates[J]. Clays and Clay Minerals,1995,43(3):294-303.
    [3] CHANG F R C, SKIPPER N T,SPOSITO G. Monte Carlo and molecular dynamics simulations of electrical doublelayer structure in potassium montmorillonite hydrates[J]. Langmuir,1998,14(5):1201-1207.
    [4] GREATHOUSE J,SPOSITO G. Monte Carlo and Molecular Dynamics Studies of Interlayer Structure in Li (H2O)3-Smectites[J]. The Journal of Physical Chemistry B, 1998,102(13):2406-2414.
    [5] PARK S H,SPOSITO G. Monte Carlo simulation of total radial distribution functions for interlayer water in Li-, Na-,and k-montmorillonite hydrates[J]. The Journal of Physical Chemistry B,2000, 104(19):4642-4648.
    [6] HENSEN E J M,SMIT B. Why clays swell[J]. The Journal of Physical Chemistry B,2002,106(49):12664-12667.
    [7] 王进,曾凡桂,王军霞. 锂,钠,钾水化蒙脱石层间结构的分子动力学模拟[D]. 太原:太原理工大学,2006.

    WANG Jin,ZEN Fangui,WANG Junxia. Molecular dynamics simulation of Li,Na,K hydrated montmorillonite interlamellar structure[D]. Taiyuan:Taiyuan Science & Technology University,2006.
    [8] 徐加放,孙泽宁,刘洪军,等. 分子模拟无机盐抑制蒙脱石水化机理[J]. 石油学报,2014, 35(2):377-384.

    XU Jiafang,SUN Zening,LIU Hongjun,et al. Molecular simulation for inorganic salts inhibition mechanism on montmorillonite hydration[J]. Acta Petrolei Sinica,2014,35(2):377-384.
    [9] 张亚云,陈勉,邓亚,等. 温压条件下蒙脱石水化的分子动力学模拟[J]. 硅酸盐学报,2018(10):22.

    ZHANG Yayun,CHENG Mian,DENG Ya,et al. Molecular dynamics simulation of montmorillonite hydration under temperature and pressure[J]. Journal of the Chinese Ceramic Society,2018(10):22.
    [10] CYGAN R T,LIANG J J,KALINICHEV A G. Molecular models of hydroxide,oxyhydroxide,and clay phases and the development of a general force field[J].The Journal of Physical Chemistry B, 2004,108(4):1255-1266.
    [11] SKIPPER N T, SPOSITO G, CHANG F C. Monte Carlo simulation of interlayer molecular structure in swelling clay minerals.2. Monolayer hydrates[J]. Clays Clay Minerals, 1995, 43(3):294-303.
    [12] LOEWENSTEIN W. The distribution of aluminum in the tetrahedra of silicates and aluminates[J]. American Mineralogist Journal of Earth and Planetary Materials, 1954,39(1-2):92-96.
    [13] ZHENG Y,ZAOUI A,SHAHROUR I. A theoretical study of swelling and shrinking of hydrated Wyoming montmorillonite[J]. Applied Clay Science,2011,51(1-2):177-181.
    [14] SAMOLETOV A A,DETTMANN C P,CHAPLAIN M A J. Thermostats for "slow" configurational modes[J]. Journal of Statistical Physics,2007,128(6):1321-1336.
    [15] FRENKEL D,SMIT B. Understanding molecular simulation from algorithms to applications[M]. Elsevier,2001.
    [16] SHAHRIYARI R,KHOSRAVI A,AHMADZADEH A. Nanoscale simulation of Na-Montmorillonite hydrate under basin conditions,application of CLAYFF force field in parallel GCMC[J]. Mol Phys,2013,111(20):3156-3167.
    [17] DE PABLO L,CHÁVEZ M L,DE PABLO J J. Stability of Na-,K-,and Ca-montmorillonite at high temperatures and pressures:a Monte Carlo simulation[J]. Langmuir,2005,21(23):10874-10884.
    [18] ZHENG Y,ZAOUI A. How water and counterions diffuse into the hydrated montmorillonite[J]. Solid State Ionics,2011,203(1):80-85.
  • 加载中
计量
  • 文章访问数:  514
  • HTML全文浏览量:  144
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-25

目录

    /

    返回文章
    返回