Study On Intelligent Gel Breaking Completion Fluid System In Offshore Oil-Gas Field
-
摘要: 针对海上油气田稠油油藏开发,采用鱼骨刺分支井技术,分支井段充填过程完井液无法进行破胶返排,使分支井段无法有效实施砾石充填,因此,研发出一套配套智能破胶完井液体系。该体系采用琥珀酸酐改性稳定性强的黄原胶,控制琥珀酸酐加量、反应时间决定琥珀酸酯基团取代度,通过琥珀酸酐消耗黄原胶中的醇羟基,抑制氧化自由基能力降低,降低黄原胶稳定性,避免完井液破胶困难的问题。通过优化NaOH、Na2CO3、抗氧化剂加量来调控完井液破胶时间达到智能破胶的目的。通过优化改性黄原胶XC-2配制的完井液配方,可将完井液破胶时间控制在3~8 d;黄原胶XC-1配制的完井液破胶时间可控制在5~14 d;流型调节剂XC-1、XC-2分别配制的完井液破胶前后储层渗透率恢复值均大于89%,对储层均具有较好的保护效果。Abstract: For the development of heavy oil reservoirs in offshore oil and gas fields, the fish bone spur branch well technology was adopted, and the completion fluid in the branch well filling process cannot be gel-broken, so that gravel pack operation cannot be effectively implemented in the branch well. Therefore, an intelligent gel breaking completion fluid system was developed. Using the completion fluid of xanthan gum modified by succinic anhydride to solve the problem. Controlling the addition of succinic anhydride and reaction time to determine the substitution degree of succinic ester group. Alcohol hydroxyl was replaced by succinic anhydride in xanthan gum, it can reduce the ability of inhibiting oxidative free radicals, reduce the stability of xanthan gum, and solve the problem about difficultly breaking completion fluid. To achieve the purpose of intelligent gel breaking the gel-breaking time of completion fluid was regulated by optimizing the dosage of NaOH, Na2CO3 and antioxidant. Breaking time of the completion fluid prepared by XC-2 was controlled within 3-8 days. Breaking time of the completion fluid prepared by XC-1 was controlled within 5-14 days. The recovery values of reservoir permeability were all greater than 89% before and after the gel breaking of completion fluid prepared by XC-1 and XC-2, which had good protection effect to the reservoir.
-
[1] 张迎春, 赵春明, 李歆, 等. 水平分支井技术在渤海稠油油田开发中的应用[J]. 岩性油气藏, 2011, 23(1):118-122.ZHANG Yingchun, ZHAO Chunming, LI Xin, et al. Application of multilateral well technology to development of heavy oil fields in the Bohai Sea[J]. Lithologic Reservoirs, 2011, 23(1):118-122. [2] 郑俊德, 杨长祜. 水平井、分支井采油工艺现状分析与展望[J]. 石油钻采工艺, 2005, 27(6):93-96.ZHENG Junde, YANG Changhu. Status analysis and prospect of horizontal well, complex structure well techniques[J].Oil Drilling &Production Technology, 2005, 27(6):93-96. [3] 杨文领, 张恒, 王玥, 等. 青海油田第一口分支水平井钻完井工程实践[J]. 石油钻采工艺,2015,37(6):5-8.YANG Wenling, ZHANG Heng, WANG Yue, et al. Drilling and completion operation practice of first multilateral horizontal well in Qinghai Oilfield[J]. Oil Drilling & Production Technology, 2015, 37(6):5-8. [4] 陈波, 张杰, 李炀辉, 等. DSF2多底多分支水平井钻井液技术[J]. 钻井液与完井液, 2010, 27(3):55-58.CHEN Bo, ZHANG Jie, LI Yanghui, et al. Drilling fluid technology for the multilateral horizontal well DSF2[J]. Drilling Fluid & Completion Fluid, 2010, 27(3):55-58. [5] 舒福昌, 向兴金, 李蔚萍, 等. 活性盐水完井液研究[J]. 中国海上油气, 2010, 22(4):262-264.SHU Fuchang, XIANG Xingjin, LI Weiping, et al. Study on active brine completion fluid[J].China Offshore Oil and Gas, 2010, 22(4):262-264. [6] 朱瑞宜, 李健, 程树军. 新型微胶囊破胶剂的研制[J]. 油田化学, 1997, 14(3):271-273.ZHU Ruiyi, LI Jiang, CHENG Shujun. A Wax-capsulated gel breaker:preparation and laboratory evaluation[J]. Oilfield Chemistry, 1997, 14(3):271-273. [7] 陈挺, 周勋, 党伟, 等.MCB系列微胶囊破胶剂的性能[J]. 钻井液与完井液, 2016, 33(4):114-116.CHEN Ting, ZHOU Xun, DANG Wei, et al.Properties of the MCBseries microcapsule gel breaker[J].Drilling Fluid&CompletionFluid, 2016, 33(4):114-116. [8] 岳前升, 刘书杰, 何保生, 等. 海洋油田水平井胶囊破胶液技术[J]. 大庆石油学院学报, 2010, 34(4):85-88.YUE Qiansheng, LIU Shujie, HE Baosheng, et al. Laboratory study on micro capsulated gel breaker fluid for horizontal wells in offshore oilfields[J].Journal of Daqing Petroleum Institute, 2010, 34(4):85-88. [9] 崔伟香, 王春鹏. 压裂用胶囊破胶剂在高压液体中的释放研究[J]. 油田化学, 2016, 33(4):619-622.CUI Weixiang, WANG Chunpeng. Extrusion and release research of encapsulated gel breaker in fracturing fluid with high pressure[J]. Oilfield Chemistry, 2016, 33(4):619-622. [10] 韦红术, 张俊斌, 张伟国, 等. 泥饼可液化处理的UltraFLO钻井完井液[J]. 钻井液与完井液, 2015, 32(4):37-39.WEI Hongshu, ZHANG Junsheng, ZHANG Weiguo, et al. UltraFLO Drill-in Fluid[J]. Drilling Fluid&CompletionFluid, 2015, 32(4):37-39. [11] 熊小英. 黄原胶的化学改性及其衍生物抗氧化活性研究[D]. 上海:上海海洋大学, 2013. XIONG Xiaoying. Chemical modification and antioxidant activity of xanthan and its derivatives[D]. Shanghai:Shanghai Ocean University, 2013. [12] 吴乐, 徐同台, 韩斅, 等. 黄原胶高温稳定性的影响因素[J]. 钻井液与完井液, 2011, 28(6):77-80.WU Le, XU Tongtai, HAN Xiao, et al. Research on high temperature stability effects of xanthan gum[J]. Drilling Fluid&CompletionFluid, 2011, 28(6):77-80. [13] 鄢捷年. 钻井液工艺学[M]. 2版. 东营:中国石油大学出版社, 2012:119-122. YAN Jienian. Drilling fluid technology[M].2rd ed. Dongying:China University of Petroleum Press, 2012:119-122. [14] 刘东明, 黄进军, 王瑞莲, 等. 钻井液pH值的影响因素研究[J]. 油田化学, 2007, 48(1):1-4.LIU Dongming, HUANG Jinjun, WANG Ruilian, et al. Researches of the factors affecting the pH value of water base drilling fluids[J].Oilfield Chemistry, 2007, 48(1):1-4.
点击查看大图
计量
- 文章访问数: 416
- HTML全文浏览量: 138
- PDF下载量: 32
- 被引次数: 0