Preparation and Application of a Temperature-Controlled Expanding LCM Made from Shape-Memory Polymer
-
摘要: 针对裂缝性漏失地层,利用低聚物树脂单体与交联剂和增韧剂在催化剂作用下加热交联,制备温度触变模式的抗温承压形变聚合物膨胀堵漏剂SDP,以自适应漏失空间架桥堵塞。研制SDP系列聚合物板材常温抗压强度≥71.62 MPa,高温抗压强度≥17.21 MPa;在激活温度环境下,膨胀延迟时间为40.07~53.43 min,随着环境温度的升高,膨胀延迟时间降低。其不同粒径颗粒复配后可对裂缝膨胀架桥封堵,9%浓度的堵漏液承压能力≥9.5 MPa。将温控膨胀堵漏剂复配刚性和弹性颗粒、柔性纤维等材料在宁夏兴1井进行了应用,解决了延安组煤层裂缝性反复漏失问题,一次堵漏成功率100%,漏失量相比降低了77.67%。Abstract: An expandable polymer lost circulation material (LCM), SDP, was developed to deal with mud losses into fractured formations. SDP was made from oligomer resin monomer which reacts at high temperatures with a crosslinker and a toughener under the action of a catalyst. SDP is pressure bearable and its expansion is triggered by temperature. When entering into a loss channel, SDP makes itself adaptive to the space where it is and bridges the space, thereby stop mud losses. The SDP developed has compressive strength under ambient temperature of greater than 71.62 MPa, and compressive strength under high temperature of greater than 17.21 MPa. At temperatures triggering the expansion of SDP, the expansion lag time is 40.07-53.43 min. As temperature increases, the lag time becomes shorter accordingly. LCM made with SDP of different particle sizes can stop mud losses through expansion and bridging. The pressure bearing capacity of a 9% SDP LCM slurry is greater than 9.5 MPa, as laboratory experiment indicated. Application of an LCM slurry made by mixing SDP particles, rigid particles, elastic particles and flexible fibers on the well Xing-1 in Ningxia solved the repeated losses of mud into Yan'an formation, a fractured coal zone. The mud loss was 100% stopped at the first try, and the total volume of mud losses was reduced by 77.67%.
-
Key words:
- Shape-memory /
- Temperature controlled /
- Delayed expansion /
- Pressure bearing /
- Mud loss into fracture
-
[1] 王中华. 复杂漏失地层堵漏技术现状及发展方向[J]. 中外能源, 2014, 19(1):39-48.WANG Zhonghua.The status and development direction of plugging technology for complex formation lost circulation[J].Sino Global Energy, 2014, 19(1):39-48. [2] EI-HASSAN H, ABDELRAHMAN M, JOHNSON C, et al.Using a combination of cement systems to defeat severe lost-circulation zones in u.A.E.-A case history[C]//SPE Middle East Oil and Gas Show and Conference, Kingdom of Bahrain, 2005. [3] 石晓兵, 熊继有, 吴建, 等. 山前构造裂缝地层钻井液漏失规律研究[J]. 天然气技术与经济, 2011, 5(2):41-43.SHI Xiaobing, XIONG Jiyou, WU Jian, et al.Study on the law of drilling fluid loss in fractured strata of piedmont structure[J].Natural Gas Technology and Economy, 2011, 5(2):41-43. [4] 王明波, 郭亚亮, 方明君, 等. 裂缝性地层钻井液漏失动力学模拟及规律[J]. 石油学报, 2017, 38(5):597-606.WANG Mingbo, GUO Yaliang, FANG Mingjun, et al. Dynamics simulation and drilling fluid loss in fractuered formation[J].Acta Petrolei Silica, 2017, 38(5):597-606. [5] 王中华. 聚合物凝胶堵漏剂的研究与应用[J]. 精细化工与专用化学品, 2011, 19(4):16-20.WANG Zhonghua.Research and application progress of the polymer gel plugging agent[J].Fine and Specialty Chemicals, 2011, 19(4):16-20. [6] KULKARNI S D, IAMISON D E, TEKE K D. Managing suspension characteristics of lost-circulation materials in a drilling fluid[C]//SPE Deepwater Drilling and Completions Conference.Galveston:SPE, 2014. [7] KULKARNI S D.IAMISON D E, SAVARI S, et al. Modelling suspension of lost circulation materials in a drilling fluid[C]//AADE-14-FTFC-24.Houston, Texas:American Association of Drilling Engineers, 2014. [8] 李敏, 黎厚斌. 形状记忆材料研究综述[J]. 包装学报, 2014, 6(4):17-23.LI Min, LI Houbin.Review of shape memory materials[J]. Packing aging Journal, 2014, 6(4):17-23. [9] 刘婷婷, 朱光明, 魏堃, 等. 形状聚合物复合材料的研究进展[J]. 高分子材料科学与工程, 2013, 29(11):183-183.LIU Tingting, ZHU Guangming, WEI Kun, et al. Advances in shape memory polymer composites[J].Polymer Materials Science & Engineer, 2013, 29(11):183-183. [10] 王刚, 史新妍. 聚合物形状记忆材料的研究进展[J]. 高分子通报, 2016(6):23-30. WANG Gang, SHI Xinyan.The research progress of shape memory polymer[J].Polymer Bulletin, 2016(6):23-30. [11] 林雅, 刘铁民. 形状记忆高分子材料的研究进展[J]. 硅酸盐通报, 2015, 34(Supplement):78-81. LIN Ya, LIU Tie-min. Research progress of shape memory polymer[J].Bulletin of the chinese ceramic society, 2015, 34(Supplement):78-81. [12] 王敏生, 光新军, 孔令军. 形状记忆聚合物在石油工程中的应用前景[J]. 石油钻探技术, 2018, 46(5):14-20.WANG Minsheng, GUANG Xinjun, KONG Lingjun. The prospects of applying shape memory polymer in petroleum engineering[J].Petroleum Drilling Technique, 2018, 46(5):14-20. [13] 暴丹, 邱正松, 赵欣, 等. 基于温敏形状记忆特性的智能化堵漏材料研究展望[J]. 钻井液与完井液, 2019, 36(3):265-272.BAO Dan, QIU Zhengsong, ZHAO Xin, et al.Outlook on the research on intelligent LCM with temperature sensitive shape memory property[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):265-272. [14] 刘振东, 李公让, 高杨, 等. 一种智能堵漏剂. 中国:CN 108239530 A[P]. 2018-07-03. LIU Zhendong, LI Gongrang, GAO Yang, et al. An intelligent plugging agent. China:CN 108239530 A[P]. 2018-07-03. [15] 王强. 智能堵漏剂室内研究[D]. 沈阳:东北石油大学, 2012. WANG Qiang. Indoor research on the intelligent plugging agents[D].Shenyang:Northeast Petroleum University, 2012. [16] 暴丹, 邱正松, 叶链, 等. 热致形状记忆"智能"型堵漏剂的制备与特性实验[J]. 石油学报, 2020, 41(1):106-115.BAO Dan, QIU Zhengsong, YE Lian, et al. Preparation and chatacteristic experiments of intelligent lost circulation materials based on thermaly shape memory polymer[J].Acta Petrolei Silica, 2020, 41(1):106-115. [17] 宋盛菊, 杨法杰, 褚庭亮, 等. 环氧树脂增韧方法及增韧剂的研究进展[J]. 中国印刷与包装研究, 2013, 5(5):9-24.SONG Shengjv, YANG Fajie, CHU Tingliang, et al. Research progress of epoxy resin toughening method and toubening agent[J].China Printing and Packing Study, 2013, 5(5):9-24. [18] 陈浩, 黄笔武. 硅氧烷脂环族环氧树脂的合成及作为增韧剂应用[J]. 热固性树脂, 2018, 33(1):21-25.CHEN Hao, HUANG Biwu.Synthesis of siloxane alicyclic epoxy resin and application as toughening agent[J].Thermosetting Resin, 2018, 33(1):21-25. [19] 刘兴亮, 李小杰. 一种新型环氧热固型树脂增韧剂-超支化聚酯醚[C]. 中国化学会, 全国高分子学术论文报告会, 2017. LIU Xingliang, LI Xiaojie.A new type of epoxy thermosetting resin toughener-hyperbranched polyester ether[C].Chinese Chemical Society, National Polymer Academic Paper Report, 2017. [20] 贾利春, 陈勉, 谭清明, 等. 承压封堵裂缝止裂条件影响因素分析[J]. 石油钻探技术, 2016, 44(1):49-56.JIA Lichun, CHEN Mian, TAN Qingming, et al.Key factors for inhibiting fracture propagation during leakage control under pressure[J].Petroleum Drilling Fluid Techniques, 2016, 44(1):49-56. [21] 邱正松, 暴丹, 李佳, 等. 井壁强化机理与致密承压封堵钻井液技术新进展[J]. 钻井液与完井液, 2018, 35(4):1-6.QIU Zhengsong, BAO Dan, LI Jia, et al.Mechanisms of wellbore strengthening and new advances in lost circulation control with densepressure bearing zone[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):1-6. [22] 王贵, 蒲晓林. 提高地层承压能力的钻井液堵漏作用机理[J]. 石油学报, 2010, 31(6):1009-1012.WANG Gui, PU Xiaolin.Plugging mechanism of drilling fluid by enhancing wellbore pressure[J].Acta Petrolei Sinica, 2010, 31(6):1009-1012. [23] KUMAR A, WAVARI S, WHITFILL D, et al. Wellbore strengthening:the less-studied properties of lost-ciculation materials[R].SPE 133484, 2010.
点击查看大图
计量
- 文章访问数: 478
- HTML全文浏览量: 144
- PDF下载量: 35
- 被引次数: 0