Laboratory Study on Optimization of Drilling Fluid Used in Southwest Tarim Basin with Nanoemulsion
-
摘要: 塔西南地区油气资源丰富,具有良好的勘探开发潜力,但由于地质条件复杂,钻探过程中普遍发生井漏、卡钻、划眼、坍塌、遇阻、溢流等复杂情况,其中井漏发生高达30余次,卡钻发生10余次,钻井周期最长达719 d,严重制约了该区油气资源的勘探开发进程。为了改善塔西南地区复杂频发的情况,分析了该区井壁失稳的主要原因,在此基础上通过对比筛选,最终采用自主研制的钻井液用内核纳米乳液,其是以纳米SiO2为内核的纳米乳液,粒径D50分布在100 nm左右。其油相可以抑制黏土矿物的膨胀,并且在孔隙以及裂缝中形成“软+硬”封堵体系。室内实验表明,当添加5%的纳米内核乳液进行优化时,钻井液高温高压滤失量为3.8 mL;压力传导法显示优化后较优化前平衡时间缩短了125 min,压力减小0.337 MPa;回收率实验得到优化后钻井液回收率达到85%。证实内核纳米乳液是可以作为水基钻井液的添加剂,实现对钻井液的优化。Abstract: The southwest Tarim Basin has plenty of oil and gas resources, rendering this area excellent exploration and development potential. However, the complex geological condition in this area seriously restricts the exploration and development potential. Mud losses, pipe sticking, reaming, borehole wall collapse, resistance to the tripping of drilling tools and well kick have often been encountered during drilling. Among these, mud losses happened for more than 30 times and pipe sticking more than 10 times. The longest drilling time of a well was as long as 719 d. To deal with these problems, the main factors affecting the stability of the borehole wall was analyzed, and based on the analysis, a core nanoemulsion developed by the China University of Petroleum (Beijing) was selected as borehole wall stabilizer. The core nanoemulsion is a nanoemulsion with nano SiO2 as the core, and the D50 of the cores is about 100 nm. The oil phase of the nanoemulsion can be used to inhibit the swelling of clays, and form "soft + hard" plugging system in pores and fractures. Laboratory experiment showed that a drilling fluid optimized with 5% core nanoemulsion had HTHP filtration rate of only 3.8 mL. Pressure transmission test showed that time for the balance of pressure transmission was reduced by 125 min after optimization, and the pressure was reduced by 0.337 MPa. In hot rolling test, the percent recovery of shale cuttings was 85% when tested with the optimized drilling fluid. All these facts prove that the core nanoemulsion can be used as a water base mud additive for optimizing the mud performance.
-
[1] 李鹭光, 何海清, 范土芝, 等. 中国石油油气勘探进展与上游业务发展战略[J]. 中国石油勘探, 2020, 25(1):1-10.LI Luguang, HE Haiqing, FAN Tuzhi, et al. Oil and gas exploration progress and upstream development strategy of CNPC[J]. China Petroleum Exploration, 2020,25(1):1-10. [2] 郭秋麟, 武娜, 闫伟, 等. 深层天然气资源评价方法[J]. 石油学报, 2019, 40(4):383-394.GUO Qiulin, WU Na, YAN Wei, An asessment method for deep gas resources[J]. Acta Petrolei Sinica, 2019, 40(4):383-394. [3] 刘洪涛, 刘举, 刘会锋, 等. 塔里木盆地超深层油气藏试油与储层改造技术进展及发展方向[J]. 天然气工业, 2020, 40(11):76-88.LIU Hongtao, LIU Ju, LIU Huifeng, et al. Progress and development direction of production test and reservoir stimulation technologies for ultra-deep oil and gas reservoirs in Tarim basin[J]. Natural Gas Industry, 2020, 40(11):76-88. [4] 孙龙德, 邹才能, 朱如凯, 等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发, 2013, 40(6):641-649.SUN Longde, ZOU Caineng, ZHU Rukai, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J].Petroleum Exploration and Development, 2013, 40(6):641-649. [5] 魏国齐, 李君, 董才源, 等. 塔里木盆地重点油气勘探新领域及方向[C]//第31届全国天然气学术年会(2019)论文集(01地质勘探). 2019:8. WEI Guoqi, LI Jun, DONG Caiyuan, et al. Key oil and gas exploration fields and directions in Tarim basin[C]//Proceedings of the 31st National Annual Conference on Natural Gas (2019) (01 Geological Exploration).2019:8. [6] 孙龙德, 周新源, 王国林. 塔里木盆地石油地质研究新进展和油气勘探主攻方向[J]. 地质科学, 2005, 40(2):167-178.Sun Longde, Zhou Xinyuan, Wang Guolin. Contributions of petroleum geology and main directions of oil gas exploration in the Tarim basin[J].Chinese Journal of Geology, 2005, 40(2):167-178. [7] 何登发, 李德生, 何金有, 等. 塔里木盆地库车坳陷和西南坳陷油气地质特征类比及勘探启示[J]. 石油学报, 2013, 34(2):201-218.HE Dengfa, LI Desheng, HE Jinyou, et al. Comparison in petroleum geology between Kuqa depression and southwest depression in Tarim basin and its exploration si gnificance[J].Acta Petrolei Sinica, 2013, 34(2):201-218. [8] 康玉柱. 塔里木盆地油气资源潜力及勘探方向[J]. 石油科学通报, 2018, 3(4):369-375.KANG Yuzhu.The resource potential and exploration for oil and gas in the Tarim basin[J].Petroleum Science Bulletin, 2018, 3(4):369-375. [9] 王立锋, 王杰东, 冯纪成, 等. 塔河油田超深定向井KCl-阳离子乳液聚磺钻井液技术[J]. 石油钻探技术, 2012, 40(3):73-77.WANG Lifeng, WANG Jiedong, FENG Jicheng, et al. Progress and development direction of production test and reservoir stimulation technologies for ultra-deep oil and gas reservoirs in Tarim basin[J]. Petroleum Drilling Technology, 2012, 40(3):73-77. [10] 王权阳, 李尧. 抗高温KCl聚磺钻井液体系在伊朗FX井中的应用[J]. 石油钻采工艺, 2012, 34(1):50-53.WANG Quanyang, LI Yao. Application of temperature resistant polymer-sulfonate KCl mud system on well FX in Iran[J].Petroleum Drilling and Production Technology, 2012, 34(1):50-53. [11] 于得水, 徐泓, 吴修振, 等. 满深1井奥陶系桑塔木组高性能防塌水基钻井液技术[J]. 石油钻探技术, 2020, 48(5):49-54.YU Deshui, XU Hong, WU Xiuzhen, et al. High performance anti-sloughing water based drilling fluid technology for well Manshen 1 in the Ordovician Sangtamu formation[J]. Petroleum Drilling Technology, 2020, 48(5):49-54. [12] ARAMENDIZ J, IMQAM A H, FAKHER S M. Design and evaluation of a water-based drilling fluid formulation using SiO2 and graphene oxide nanoparticles for unconventional shales[J]. International Petroleum Technology, 2019. [13] 刘岳龙, 吴千慧. 红河油田长8区块封堵裂缝用冻胶的研制[J]. 西安石油大学学报(自然科学版), 2020, 35(2):60-65. LIU Yuelong, WU Qianhui. Development of Gel for sealing fracture in Chang 8 block of Honghe oilfield[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2020, 35(2):60-65. [14] 赵春花, 夏小春, 项涛, 等. 防冻型纳米乳化石蜡PF-EPF的研制与应用[J]. 钻井液与完井液, 2016, 33(5):9-14.ZHAO Chunhua, XIA Xiaochun, XIANG Tao, et al. Development and application of antifreeze nano emulsified paraffin PF-EPF[J].Drilling Fluids & Completion Fluids, 2016, 33(5):9-14. [15] 廖奉武, 李坤豫, 胡靖, 等. 钻井液封堵剂高温高压封堵性能评价方法[J]. 科学技术与工程,2019,19(29):90-95.LIAO Fengwu, LI Kunyu, HU Jing, et al. Evaluation method for HTHP plugging property of drilling fluid plugging agent[J].Science Technology and Engineering, 2019, 19(29):90-95 [16] 侯杰. 硬脆性泥页岩微米-纳米级裂缝封堵评价新方法[J]. 石油钻探技术, 2017, 45(3):32-37.HOU Jie. a new method of plugging micro/nano meter cracksin hard, brittle share[J]. Petroleum Drilling Technology, 2017, 45(3):32-37. [17] POLYMER RESEARCH. Detail research in polymer research(Evaluation and utilization of nano-micron polymer plug for heterogeneous carbonate reservoir with thief zones)[J]. Energy Weekly News, 2020. [18] 刘振东, 贺伦俊, 李卉, 等. 钻井液纳米颗粒封堵性评价方法研究[J]. 钻井液与完井液, 2019, 36(2):214-217.LIU Zhendong, HE Lunjun, LI Hui, et al. Study on the Method of evaluating plugging capacity of nanoparticles used in drilling fluid[J].Drilling Fluids & Completion Fluids, 2019, 36(2):214-217. [19] 张路锋, 周福建, 张士诚, 等. 塔里木克深致密砂岩气藏基质钻井液伤害评价[J]. 钻井液与完井液, 2019, 36(1):126-132.ZHANG Lufeng, ZHOU Fujian, ZHANG Shicheng,et al. Evaluation of drilling fluid damage to matrices of tight sandstone of Keshen gas reservoir in Tarim basin[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):126-132.
点击查看大图
计量
- 文章访问数: 547
- HTML全文浏览量: 189
- PDF下载量: 45
- 被引次数: 0