Research Progress of Controllable Polymer Gel Lost Circulation Materials
-
摘要: 现今钻井过程中的井漏问题严重,聚合物凝胶堵漏材料具有高黏弹性、可变形性的优势。但是,聚合物凝胶堵漏材料成胶不可控,严重制约了其在钻井堵漏中的应用。综述了可控化聚合物凝胶堵漏技术的研究进展、刺激响应聚合物凝胶材料的类型与作用机制及其在可控化凝胶堵漏方面的应用前景,总结出延迟交联、微胶囊化、触变自愈合、剪切响应成胶以及离子诱导成胶等刺激响应聚合物凝胶堵漏材料日益成为现今可控化堵漏材料研究的热点;同时,刺激响应功能聚合物凝胶材料的研究业已成熟,钻井液环境能够提供聚合物凝胶堵漏材料的刺激响应条件。因此,开发刺激响应功能的聚合物凝胶堵漏材料将有利于实现智能化、可控化堵漏。Abstract: Polymer gel lost circulation materials (LCM) have the advantages of high viscoelasticity and deformability. However, the gelation of polymer gel LCM is uncontrollable, severely restricting their use in controlling mud losses. This paper summarizes the research progress made in the development of controllable polymer gel LCM technology and points out that delayed crosslinking, microencapsulation, thixotropic self-healing, shear-response gelling as well as ion-induced gelling, in which the response polymers are stimulated to form LCM suitable for mud loss control, are increasingly becoming a hot spot in the research of controllable LCM. Meanwhile, Study on the stimulus-response functional polymer gel material has become mature, and the environment in drilling fluids can provide stimulus response condition for polymer gel LCM. It is thus concluded that the development of polymer gel LCM with stimulus-response function will be beneficial to the intelligent and controllable mud loss treatment.
-
Key words:
- Polymer gel /
- Controllable mud loss treatment /
- Drilling /
- Stimulus-response /
- Research progress
-
[1] 张希文, 李爽, 张洁, 等. 钻井液堵漏材料及防漏堵漏技术研究进展[J]. 钻井液与完井液, 2009, 26(6):74-79.ZHANG Xiwen, LI Shuang, ZHANG Jie, et al. Research progress of drilling fluid plugging materials and leakage prevention and plugging technology[J]. Drilling Fluid & Completion Fluid, 2009, 26(6):74-79. [2] 韩宇, 余文萍. 钻完井过程中漏失机理及堵漏技术研究进展[J]. 化工设计通讯, 2018, 44(6):247-248.HAN Yu, YU Wenping. Research progress on leakage mechanism and plugging technology during drilling and completion[J]. Chemical Engineering Design Communications, 2018, 44(6):247-248. [3] 杨勇, 罗鸣, 韩成, 等. 国内外大裂缝、溶洞性复杂地层堵漏技术进展[J]. 化学工程与装备, 2018, 8:282-284. YANG Yong, LUO Ming, HAN Cheng, et al. Progress in plugging technology for large fractures and complex cavernous formations at home and abroad[J]. Chemical Engineering & Equipment, 2018, 8:282-284. [4] arene:an anion-triggered hydrogelator[J]. Chemical Communications, 2008:3900-3902. [4] 刘延强, 徐同台, 杨振杰, 等. 国内外防漏堵漏技术新进展[J]. 钻井液与完井液, 2010, 27(11):80-84.LIU Yanqiang, XU Tongtai, YANG Zhengjie, et al. New development of leak prevention and plugging technology at home and abroad[J]. Drilling Fluid & Completion Fluid, 2010, 27(11):80-84. [5] 聂天宇, 郭建彬, 刘锋. 钻井液堵漏材料与防漏堵漏技术研究[J]. 化工设计通讯, 2020, 46(10):197-198.NIE Tianyu, GUO Jianbin, LIU Feng. Research on drilling fluid plugging materials and leak prevention plugging technology[J]. Chemical Engineering Design Communications, 2020, 46(10):197-198. [6] 鲁亿, 黄进军, 张斌, 等. 井下聚合堵漏技术研究[J]. 钻井液与完井液, 2010, 27(3):36-40.LU Yi, HUANG Jingjun, ZHANG Bin, et al. Research on downhole polymer plugging technology[J]. Drilling Fluid & Completion Fluid, 2010, 27(3):36-40. [7] 胡祖彪, 李德波, 陈秉炜, 等. 智能凝胶GD-1在陕北黄土层防漏堵漏中的应用[J]. 钻井液与完井液, 2010, 27(1):85-86.HU Zubiao, LI Debo, CHEN Bingwei, et al. The application of smart gel GD-1 in anti-leakage and plugging of loess in northern Shaanxi[J]. Drilling Fluid & Completion Fluid, 2010, 27(1):85-86. [8] 徐元德, 葛际江, 潘逸平, 等. 铬冻胶缓交联体系[J]. 石油化工, 2019, 48(9):943-948.XU Yuande, GE Jijiang, PAN Yiping, et al. Chromium jelly slow crosslinking system[J]. Petrochemical Technology, 2019, 48(9):943-948. [9] 张世华, 彭振斌, 秦弋丰, 等. PVA凝胶堵漏剂的研究与适用性探讨[J]. 土工基础, 2016, 30(4):495-498.ZHANG Shihua, PENG Zhenbin, QIN Yifeng, et al. Feasibility of leaking sealing using PVA gels[J]. Soil Engineering and Foundation, 2016, 30(4):495-498. [10] 金正谦, 王煜. 聚合物铝冻胶堵剂的室内研制[J]. 油田化学, 2001, 18(3):222-224.JIN Zhengqian, WANG Yu. Indoor development of polymer/Aluminum(Ⅲ) jelly plugging agent[J]. Oilfield Chemistry, 2001, 18(3):222-224. [11] 任占春, 秦利平, 孙慧毅. 聚丙烯酰胺/有机钛冻胶压裂液[J]. 油田化学, 1995, 12(4):328-331.REN Zhanchun, QIN Liping, SUN Huiyi. Polyacrylamide/Organic Titanium gel fracturing fluid[J]. Oilfield Chemistry, 1995, 12(4):328-331. [12] 戴彩丽, 张贵才, 赵福麟. 影响醛冻胶成冻因素的研究[J]. 油田化学, 2001, 18(1):24-26.DAI Caili, ZHANG Guicai, ZHAO Fuling. Study on the factors affecting the formation of aldehyde jelly[J]. Oilfield Chemistry, 2001, 18(1):24-26. [13] 孙金声, 雷少飞, 白英睿, 等. 智能材料在钻井液堵漏领域研究进展和应用展望[J]. 中国石油大学学报(自然科学版), 2020, 44(4):100-110. SUN Jinsheng, LEI Shaofei, BAI Yingrui, et al. Research progress and application prospects of smart materials in lost circulation control of drilling fluids[J]. Journal of China University of Petroleum, 2020, 44(4):100-110. [14] BROSETA Daniel, MARQUER Olivier, ALAIN Zaitoun, et al. Shear effects on polyacrylamide/chromium (Ⅲ) acetate gelation[J]. SPE Res Eval & Eng, 2000, 3(3):204-208. [15] SOUTHARD M Z, Green D W, Willhite G P. Kinetics of the chromium(vi)/thiourea reaction in the presence of polyacrylamide[J]. SPE Enhanced Oil Recovery Symposium, 1984, https://doi.org/10.2118/12715-MS. [16] 陈军, 陈小龙. 低成本延迟交联凝胶堵漏体系研究[J]. 山东化工, 2020, 49(6):141-147.CHEN Jun, CHEN Xiaolong. Study on a low-cost delayed crosslinking gel loss circulation system[J]. Shandong Chemistry Industry, 2020, 49(6):141-147. [17] 李玉飞. 有机铬的合成及延缓交联性能研究[D]. 黑龙江:东北石油大学, 2015. LI Yufei.Study on the synthesis of organic chromium and its delayed crosslinking performance[D]. Heilongjiang:Northeast Petroleum University, 2015. [18] 彭振斌, 张闯, 李凤, 等. 聚乙烯醇凝胶堵漏剂的室内研究[J]. 天然气工业, 2017, 37(6):72-78.PENG Zhenbin, ZHANG Chuang, LI Feng, et al. A laboratory study on a PVA gel plugging agent[J]. Natural Gas Industry, 2017, 37(6):72-78. [19] LI Zhiyong, LI Xingang, DU Kun, et al. Development of a new high-temperature and high-strength polymer gel for plugging fractured reservoirs[J]. Upstream Oil and Gas Technology, 2020, https://doi.org/10.1016/j.upstre.2020.100014. [20] 唐直平. 微胶囊缓释破胶及延迟调堵技术研究与应用[D]. 山东:中国石油大学(华东), 2014. TANG Zhiping. Research and application of microcapsule sustained release gel breaking and delay plugging technology[D]. Shandong:China University of Petroleum (East China), 2014. [21] 郭永宾, 颜帮川, 黄熠, 等. 高温成胶可降解聚合物凝胶堵漏剂的研制与评价[J]. 钻井液与完井液, 2019, 36(3):293-297.GUO Yongbin, YAN Bangchuan, HUANG Yi, et al. Development and evaluation of a high temperature gelling and degradable polymer lost circulation material[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):293-297. [22] 颜帮川, 蒋官澄, 胡文军, 等. 高温延迟交联聚丙烯酰胺凝胶堵漏剂的研究[J]. 钻井液与完井液, 2019, 36(6):679-682.YAN Bangchuan, JIANG Guancheng, HU Wenjun, et al. Study on high temperature delayed crosslinking PAM gel LCM[J]. Drilling Fluid & Completion Fluid, 2019, 36(6):679-682. [23] JIANG Guancheng, DENG Zhengqiang, H E Yinbo, et al. Cross-linked polyacrylamide gel as loss circulation materials for combating lost circulation in high temperature well drilling operation[J]. Journal of Petroleum Science and Engineering, 2019, 181, https://doi.org/10.1016/j.petrol.2019.106250. [24] DENG Zhengqiang, JIANG Guancheng, Yang Lili, et al. Microencapsulation of 2, 2'-Azobis (2-methylpropionamide) dihydrochloride initiator using acrylonitrile butadiene styrene as shell for application in lostcirculation control[J]. Colloids and Surfaces A, 2018, 553:134-142. [25] 张新民, 聂勋勇, 王平全, 等. 特种凝胶在钻井堵漏中的应用[J]. 钻井液与完井液, 2007, 24(5):83-84.ZHANG Xinmin, NIE Xunyong, WANG Pingquan, et al. Application of special gel in drilling and plugging[J]. Drilling Fluid & Completion Fluid, 2007, 24(5):83-84. [26] 鲁红升, 张太亮, 黄志宇. 一种新型堵漏凝胶DNG的研究[J]. 钻井液与完井液, 2010, 27(3):33-35.LU Hongsheng, ZHANG Tailiang, HUANG Zhiyu. Study on a new type of plugging gel DNG[J]. Drilling Fluid & Completion Fluid, 2010, 27(3):33-35. [27] JOHNSON L, MURPHY P, ARSANIOUS K. Improvements in lost-circulation control during drilling using shear-sensitive fluids[J]. Canadian International Petroleum Conference, 2000, https://doi.org/10.2118/2000-062. [28] QUINN David. Mechanism of a novel shear-sensitive plugging fluid to cure lost circulation[J]. SPE 50722, 1999. [29] 赵素丽, 刘金华. 防水冲稀堵漏预处理剂HSN的研制及应用[J]. 钻井液与完井液, 2011, 28(6):8-10.ZHAO Suli, LIU Jinhua. Development and application of pretreatment agent HSN[J]. Drilling Fluid & Completion Fluid, 2011, 28(6):8-10. [30] 郑军, 何涛, 王琪, 等. 地下合成凝胶堵漏性能研究[J]. 钻采工艺, 2010, 33(4):102-104.ZHENG Jun, HE Tao, WANG Qi, et al. Research on plugging performance of underground synthetic gel[J]. Drilling & Production Technology, 2010, 33(4):102-104. [31] MICHAEL F M, FATHIMA A, ALYEMNI E, et al. Enhanced polyacrylamide polymer gels using zirconium hydroxide nanoparticles for water shutoff at high temperatures:thermal and rheological investigations[J]. Ind. Eng. Chem. Res., 2018, 57:16347-16357. [32] DIJVEJIN Z A, GHAFFARKHAH A, SADEGHNEJAD S, et al. Effect of silica nanoparticle size on the mechanical strength and wellbore plugging performance of SPAM/chromium(Ⅲ) acetate nanocomposite gels[J]. Polymer Journal, 2019, 51:693-707. [33] 沈利英, 陈肖卓, 于海涛, 等. 刺激响应型有机小分子凝胶的研究进展[J]. 有机化学, 2009, 29(3):321-333.SHEN Liying, CHEN Xiaozhuo, YU Haitao, et al. Progress in stimulus-responsive gels formed by low molecular-mass organic gelators[J]. Chinese Journal of Organic Chemistry, 2009, 29(3):321-333. [34] KUKSENOK O, BALAZS A C. Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers[J]. Mater. Horiz., 2016, 3:53-62. [35] JONES C D, STEED J W. Gels with sense:supramolecular materials that respond to heat, light and sound[J]. Chemical Society Reviews, 2016, 45:6546-6596. [36] YU Xudong, CHEN Liming, ZHANG Mingming, et al. Low-molecular-mass gels responding to ultrasound and mechanical stress:towards self-healing materials[J]. Chemical Society Reviews, 2014, 43:5346-5371. [37] GONSIOR N, HETZER M, KULICKE W M, RITTER H. First studies on the influence of methylated β-cyclodextrin on the rheological behavior of 1-ethyl-3-methyl imidazolium acetate[J]. Journal of Physical Chemistry B, 2010, 114(39):12468-12472. [38] LI Yongguang, LAM E S H, TAM A Y Y, et al. Cholesterol-/Estradiol-Appended Alkynylplatinum(Ⅱ) complexes as supramolecular gelators:synthesis, characterization, photophysical and gelation studies[J]. Chemistry-A European Journal, 2013, 19(30):9987-9994. [39] HUANG Xiao, RAGHAVAN S R, TERECH P, et al. Distinct kinetic pathways generate organogel networks with contrasting fractality and thixotropic properties[J]. Journal of the American Chemical Society, 2006, 128(47):15341-15352. [40] LIU Zhixiong, FENG Yu, YAN Zhichao, et al. Multistimuli responsive dendritic organogels based on azobenzene-containing poly(aryl ether) dendron[J]. Chemistry of Materials, 2012, 24(19):3751-3757. [41] MALLIA V A, GEORGE M, BLAIR D L, et al. Robust organogels from nitrogen-containing derivatives of(R)-12-hydroxystearic acid as gelators:comparisons with gels from stearic acid derivatives[J]. Langmuir, 2009, 25(15):8615-8625. [42] MAITY S, KUMAR P, HALDAR D. Sonicationinduced instant amyloid-like fibril formation and organogelation by a tripeptide[J]. Soft Matter, 2011, 7:5239-5245. [43] MARTÍN A, BABIANO R, CINTAS P, et al. A family of hydrogels based on ureido-linked aminopolyolderived amphiphiles and bolaamphiphiles:synthesis, gelation under thermal and sonochemical stimuli, and mesomorphic characterization[J]. Chemistry-A European Journal, 2008, 14:5656-5669. [44] XIE Zhiguo, ZHANG Aiying, YE Lin, et al. Organoand hydrogels derived from cyclo(L-Tyr-L-Lys) and its ε-amino derivatives[J]. Soft Matter, 2009, 5:1474-1482. [45] MANOURAS T, VAMVAKAKI M. Field responsive materials:photo-, electro-, magnetic- and ultrasoundsensitive polymers[J]. Polym. Chem., 2017, 8:74-96. [46] INDERMUN S, CHOONARA Y E, KUMAR P, et al. An interfacially plasticized electro-responsive hydrogel for transdermal electro-activated and modulated(TEAM) drug delivery[J]. International Journal of Pharmaceutics, 2014, 462(1):52-65. [47] SUN Yixin, REN Kefeng, ZHAO Yixiu, et al. Construction of redox-active multilayer film for electrochemically controlled release[J]. Langmuir, 2013, 29(35):11163-11168. [48] SEGARRA-MASET M D, NEBOT V J, MIRAVET J F, et al. Control of molecular gelation by chemical stimuli[J]. Chemical Society Reviews, 2013, 42:7086-7098. [49] RODRÍGUEZ-LLANSOLA F, ESCUDER B, MIRAVET J F, et al. Selective and highly efficient dye scavenging by a pH-responsive molecular hydrogelator[J]. Chemical Communications, 2010, 46:7960-7962. [50] MIRAVET J F, ESCUDER B. Pyridine-functionalised ambidextrous gelators:towards catalytic gels[J]. Chemical Communications, 2005:5796-5798. [51] PIEPENBROCK M O M., LLOYD G O, CLARKE N. Gelation is crucially dependent on functional group orientation and may be tuned by anion binding[J]. Chemical Communications, 2008:2644-2646. [52] BECKER T, GOH C Y, JONES F, et al. Prolinefunctionalised calix [53] EDWARDS W, SMITH D K. Cation-responsive silverselective organogel-exploiting silver-alkene interactions in the gel-phase[J]. Chemical Communications, 2012, 48:2767-2769. [54] JIN Qingxian, ZHANG Li, ZHU Xuefeng, et al. Amphiphilic schiff base organogels:Metal-ion-mediated chiral twists and chiral recognition[J]. Chemistry-A European Journal, 2012, 18(16):4916-4922.
点击查看大图
计量
- 文章访问数: 640
- HTML全文浏览量: 163
- PDF下载量: 92
- 被引次数: 0