Application of Diversion through Broadband Temporary Plugging Multi-Fracture Fracturing Technology in Sulige Gas Field
-
摘要: 为了提高水平井裸眼滑套-封隔器完井、套管固井完井、桥塞分段多簇压裂等施工过程中分级压裂多缝封隔的可靠性,在实验室条件下对暂堵材料进行了分散性测试、降解性分析以及抗压破碎能力评价,并将宽带暂堵转向多缝压裂技术在苏里格气田进行现场应用,取得了较好的转向效果。应用结果表明,采用宽带暂堵转向多缝压裂技术,减少了桥塞、封隔器相关的操作,减少了电缆入井次数,降低了施工风险,提高了施工效率;同时,利用压裂产生的多条裂缝或裂缝网络与气藏富含区域连通,增加了裂缝的长期导流能力,对比同区块水平段长度及钻遇条件相当的水平井,试气无阻流量提高21.1%,投产1年,平均单井累产气量增加3.24×106 m3。暂堵剂与纤维在气田储层温度在90~120℃范围内可实现10d以内完全降解,完全符合安全环保生产要求。Abstract: To improve the reliability of insulating multi fractures for staged fracturing job in horizontal well completion operation such as open-hole sliding sleeve-packer completion and casing cementing well completion as well as bridge plug segmented multi-cluster fracturing, temporary plugging agents were evaluated in laboratory experiment for their dispersibility, degradability and compression resistance. The diversion through broadband temporary plugging multi-fracture fracturing technology was used in Sulige gas field with good diverting effect. Field application showed that, using diversion through broadband temporary plugging multi-fracture fracturing technology, operation of bridge plug and packer was simplified, number of cable running reduced, operational risk mitigated and operation efficiency improved. Meanwhile, the long-term flow conductivity of fractures can be increased by the connection of multi fractures or fracture network produced by the fracturing operation to gas-rich zones. Compared with offset horizontal wells with similar horizontal lengths and downhole conditions, the open flow rate of gas during well test was increased by 21.1%. After one year of production, the average cumulative gas production of a single well was increased by 3.24×106 m3. The temporary plugging agents and fibers used can be completely degraded in 10 days at reservoir temperature of 90-120℃ in Sulige gas field, fully meeting the requirements of safe and environmentally friendly production.
-
[1] 房好青, 赵兵, 汪文智, 等. 塔河油田靶向压裂预制缝转向技术模拟研究[J]. 石油钻探技术, 2019, 47(5):97-103.FANG Haoqing, ZHAO Bing, WANG Wenzhi, et al. Simulation study on the range of diversion in targeted fracturing of prefabricated fractures in the tahe oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5):97-103. [2] 陈勉. 页岩气储层水力裂缝转向扩展机制[J]. 中国石油大学学报(自然科学版), 2013, 37(5):88-94. CHEN Mian.Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J].Journal of China University of Petroleum(Edition of Natural Science), 2013, 37(5):88-94. [3] 田守嶒, 陈立强, 盛茂, 等. 水力喷射分段压裂裂缝起裂模型研究[J]. 石油钻探技术, 2015, 43(5):31-36.TIAN Shoufu, CHEN Liqiang, SHENG Mao, et al. Modeling of fracture initiation for staged hydraulic jetting fracturing[J]. Petroleum Drilling Techniques, 2015, 43(5):31-36. [4] 刘拯民. 大庆油田转向压裂工艺技术研究[J]. 化学工程与装备, 2019(4):50-51. LIU Zhengmin. Research on turning fracturing technology in Daqing oilfield[J].Chemical Engineering & Equipment, 2019(4):50-51. [5] 赵明伟, 高志宾, 戴彩丽, 等. 油田转向压裂用暂堵剂研究进展[J]. 油田化学, 2018, 35(3):538-544.ZHAO Mingwei, GAO Zhibin, DAI Caili, et al. Advancement of temporary plugging agent for fracturing in oilfield[J].Oilfield Chemistry, 2018, 35(3):538-544. [6] 尹俊禄, 刘欢, 池晓明, 等. 可降解纤维暂堵转向压裂技术的室内研究及现场试验[J]. 天然气勘探与开发, 2017, 40(3):113-119.YIN Junlu, LIU Huan, CHI Xiaoming, et al. Experimental study and field test of degradable fiber based temporary plugging and diversion fracturing technology[J]. Natural Gas Exploration and Development, 2017, 40(3):113-119. [7] 杨建委, 郑波. 纤维暂堵转向酸压技术研究及其现场试验[J]. 石油化工应用, 2013, 32(12):34-38.YANG Jianwei, ZHENG Bo. Study and field test of the fiber bridging acid fracturing technology[J]. Petrochemical Industry Application, 2013, 32(12):34-38. [8] 孙彬峰, 刘洪涛, 刘欣, 等. 多级暂堵转向重复压裂技术探索及在河南油田的应用[J]. 石油地质与工程, 2018, 32(5):107-109.SUN Binfeng, LIU Hongtao, LIU Xin, et al. Exploration and application of multi-stage temporary plugging steering and repetitive fracturing technology in Henan oilfield[J]. Petroleum Geology and Engineering, 2018, 32(5):107-109. [9] 孙兆海. 低渗透油田扶余油层垂直裂缝缝内转向压裂增产试验[J]. 化学工程与装备, 2017(6):84-86. Sun Zhaohai. Production increase test of turning fracture in vertical fracture of Fuyu reservoir in low permeability oilfield[J]. Chemical Engineering & Equipment, 2017(6):84-86. [10] 王刚. 低渗透油田缝内转向压裂增产技术研究与应用[J]. 化学工程与装备, 2017(4):63-65. WANG Gang. Research and application of in-fracture directional fracturing stimulation technology in low permeability oilfields[J]. Chemical Engineering & Equipment, 2017(4):63-65. [11] 陈天应, 彭超, 张鹏名, 等. 苏里格气田转向压裂技术优化及应用[J]. 辽宁化工, 2019, 48(2):163-165.CHEN Tianying, PENG Chao, ZHANG Pengming, et al. Optimization and application of steering fracturing technology in Sulige gas field[J]. Liaoning Chemical Industry, 2019, 48(2):163-165. [12] 丁邦春, 邱毅, 范利群, 等. 利用测井资料评价暂堵转向工艺在苏里格气田的应用效果[J]. 石油管材与仪器, 2018, 4(5):83-86.DING Bangchun, QIU Yi, FAN Liqun, et al. Application effect evaluation of temporary plugging and fracturing technology in Sulige gas field by logging data[J]. Petroleum Instruments, 2018, 4(5):83-86. [13] 杨战伟, 段瑶瑶, 王丽伟, 等. 苏里格气田致密气藏压裂改造技术研究应用[J]. 石油地质与工程, 2018, 32(6):99-102.YANG Zhanwei, DUAN Yaoyao, WANG Liwei, et al. Sulige gas field fracturing technology research and application[J].Petroleum Geology and Engineering, 2018, 32(6):99-102. [14] 李进步, 白建文, 朱李安, 等. 苏里格气田致密砂岩气藏体积压裂技术与实践[J]. 天然气工业, 2013, 33(9):65-69.LI Jinbu, BAI Jianwen, ZHU Li'an, et al. Volume fracturing and its practices in Sulige tight sandstone gas reservoirs, Ordos Basin[J]. Natural Gas Industry, 2013, 33(9):65-69. [15] 李宪文, 张矿生, 樊凤玲, 等. 鄂尔多斯盆地低压致密油层体积压裂探索研究及试验[J]. 石油天然气学报, 2013, 35(3):142-146, 152. LI Xianwen, ZHANG Kuangsheng, FAN Fengling, et al. Exploration and test of volume fracturing of low pressure tight reservoirs in Ordos Basin[J]. Journal of Oil and Gas Technology, 2013, 35(3):142-146, 152. [16] 李学垒. 苏里格"三低"油气藏水平井压裂工艺研究与应用[D]. 黑龙江大庆:东北石油大学, 2017. LI Xuelei. Research and application of horizontal well fracturing technology for "Three low" oil and gas reservoir in Sulige[D]. Heilongjiang Daqing:Northeast Petroleum University, 2017.
点击查看大图
计量
- 文章访问数: 709
- HTML全文浏览量: 197
- PDF下载量: 156
- 被引次数: 0