留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

威202、204井区页岩气钻井液密度设计优化方法

白国斌

白国斌. 威202、204井区页岩气钻井液密度设计优化方法[J]. 钻井液与完井液, 2020, 37(2): 196-201. doi: 10.3969/j.issn.1001-5620.2020.02.011
引用本文: 白国斌. 威202、204井区页岩气钻井液密度设计优化方法[J]. 钻井液与完井液, 2020, 37(2): 196-201. doi: 10.3969/j.issn.1001-5620.2020.02.011
BAI Guobin. Optimization of Drilling Fluid Density for Shale Gas Drilling in Block Wei-202 and Block Wei-204[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 196-201. doi: 10.3969/j.issn.1001-5620.2020.02.011
Citation: BAI Guobin. Optimization of Drilling Fluid Density for Shale Gas Drilling in Block Wei-202 and Block Wei-204[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 196-201. doi: 10.3969/j.issn.1001-5620.2020.02.011

威202、204井区页岩气钻井液密度设计优化方法

doi: 10.3969/j.issn.1001-5620.2020.02.011
基金项目: 

国家科技重大专项“四川盆地及周缘页岩气形成富集条件、选区评价技术与应用”(2017ZX05035)

详细信息
    作者简介:

    白国斌,1966年生,1989年毕业于西北大学石油与天然气专业,目前从事油田勘探开发研究工作。E-mail:devil.gwdc@cnpc.com.cn

  • 中图分类号: TE254

Optimization of Drilling Fluid Density for Shale Gas Drilling in Block Wei-202 and Block Wei-204

  • 摘要: 近年来川南页岩气开采规模不断扩大,取得了一定成绩的同时钻井施工过程中也遇到了较多井下复杂情况及储层污染的问题。如何优化还处于勘探阶段,过高的钻井液密度体系是当前急需解决的问题。针对钻井液密度体系设计问题,提出基于阵列声波的岩石力学评价结果来表征页岩储层的三压力剖面。在区域测压资料基础上,制作了区域垂深-孔隙压力图版约束伊顿模型,以提高三压力模型的精度。利用该结果设计了11口水平井钻井液密度安全窗口,给出了钻井液密度窗口的优选依据。钻井液密度优化对实现页岩气高效安全开发具有重要意义。

     

  • [1] 王中华. 国内页岩气开采技术进展[J]. 中外能源, 2013, 18(2):23-32.

    WANG Zhonghua. Advances in domestic shale gas extraction technology[J]. Sino-Global Energy, 2013, 18(2):23-32.
    [2] 刘伟, 伍贤柱, 韩烈祥, 等. 水平井钻井技术在四川长宁-威远页岩气井的应用[J]. 钻采工艺, 2013, 36(1):114-115.

    LIU Wei, WU Xianzhu, HAN Liexiang, et al. Application of horizontal well drilling technology in Sichuan Changning-Weiyuan shale gas well[J]. Drilling Technology, 2013, 36(1):114-115.
    [3] MICHAEL D FERGUSON, MYLES L LYNCH, SAMANTHA L POWERS, et al. The impacts of shale natural gas energy development on outdoor recreation:A statewide assessment of pennsylvanians[J]. Journal of Outdoor Recreation and Tourism, 2019, 27(3):23-27.
    [4] 刘敬平, 孙金声. 钻井液活度对川滇页岩气地层水化膨胀与分散的影响[J]. 钻井液与完井液,2016,33(2):31-35.

    LIU Jingping, SUN Jinsheng. Effect of drilling fluid activity on hydration expansion and dispersion of Sichuan-Yunnan shale gas formation[J]. Drilling Fluid & Completion Fluid, 2016, 33(2):31-35.
    [5] 明显森, 袁志平, 宾承刚. 长宁页岩气井钻井复杂情况及钻井液工艺技术[J]. 钻井液与完井液, 2017, 34(5):44-49.

    MING Xiansen, YUAN Zhiping, BIN Chenggang. Changning shale gas well drilling complex situation and drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2017, 34(5):44-49.
    [6] 曹刚, 李其荣, 安辉. 川南地区下二叠统茅口组"岩溶型气藏"地震、地质特征探讨[J]. 天然气地球科学, 1999, 10(3):76-80.

    CAO Gang, LI Qirong, AN Hui. Discussion on seismic and geological characteristics of "karst gas reservoir" of lower permian Maokou formation in south Sichuan[J]. Natural Gas Geoscience, 1999, 10(3):76-80.
    [7] 袁俊亮, 邓金根, 张定宇, 等. 页岩气储层可压裂性评价技术[J]. 石油学报, 2013, 34(3):523-527.

    YUAN Junliang, DENG Jingen, ZHANG Dingyu, et al. Fracturing evaluation technology for shale gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(3):523-527.
    [8] 李庆辉, 陈勉, 金衍, 等. 页岩气储层岩石力学特性及脆性评价[J]. 石油钻探技术, 2012, 40(4):17-22.

    LI Qinghui, CHEN Mian, JIN Xian, et al. Rock mechanical properties and brittleness evaluation of shale gas reservoirs[J]. Petroleum Drilling Technology, 2012, 40(4):17-22.
    [9] 张逸群, 余刘应, 张国锋. 基于微注入压降测试的页岩气储层快速评价方法[J]. 石油钻探技术, 2017, 45(3):45-48.

    ZHANG Yiqun, YU Liuying, ZHANG Guofeng. Rapid evaluation method of shale gas reservoirs based on micro-injection pressure drop test[J]. Petroleum Drilling Technology, 2017, 45(3):45-48.
    [10] 李红梅, 赵毅, 马振峰, 等. 页岩气储层钻井液损害评价研究[J]. 探矿工程, 2016, 43(7):107-111.

    LI Hongmei, ZHAO Yi, MA Zhenfeng, et al. Evaluation of drilling fluid damage in shale gas reservoirs[J]. Prospecting Engineering, 2016, 43(7):107-111.
    [11] 赵迪斐, 郭英海, 毛潇潇, 等. 渝东南龙马溪组下部页岩岩石学特征与优质储层形成机理[J]. 河南理工大学学报(自然科学版), 2017, 36(4):32-41. ZHAO Difei, GUO Yinghai, MAO Xiaoxiao, et al.Shale petrological characteristics and formation mechanism of high-quality reservoirs in the lower part of the Longmaxi formation in Southeast Chongqing[J]. Journal of Henan University of Science and Technology(Natural Science), 2017, 36(4):32-41.
    [12] 陈磊, 姜振学, 邢金艳, 等. 川西坳陷新场28井上三叠统须五段页岩气储层特征研究及评价[J]. 石油天然气学报, 2014, 36(5):25-31.

    CHEN Lei, JIANG Zhenxue, XING Jinyan, et al. Research and evaluation of shale gas reservoir characteristics of the upper Triassic Xu 5 member in Xinchang 28 in the western Sichuan depression[J]. Journal of Oil and Gas Technology, 2014, 36(5):25-31.
    [13] 丁安徐, 李小越, 蔡潇, 等. 页岩气地质评价实验测试技术研究进展[J]. 天然气与石油, 2014, 32(2):43-48.

    DING Anxu, LI Xiaoyue, CAI Xiao, et al. Research progress on shale gas geological evaluation experimental testing technology[J]. Natural Gas and Petroleum, 2014, 32(2):43-48.
    [14] 琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29(4):492-506.

    TONG Yiwen, BU Hongling, WANG Guochang.The main characteristics of shale gas reservoirs and their influence on reservoir reconstruction[J]. Advance in Earth Sciences, 2014, 29(4):492-506.
    [15] FRANK MALE. Using a segregated flow model to forecast production of oil, gas, and water in shale oil plays[J]. Journal of Petroleum Science and Engineering, 2019:180.
    [16] ANDREW BOSLETT, ELAINE HILL. Shale gas transmission and housing prices[J]. Resource and Energy Economics, 2019:57.
  • 加载中
计量
  • 文章访问数:  570
  • HTML全文浏览量:  132
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-20
  • 刊出日期:  2020-04-28

目录

    /

    返回文章
    返回