Study on Temperature and Pressure Correction Model for Predicting Liquid Phase Density of Drilling Fluids
-
摘要: 钻井流体密度是决定井筒中压力分布的主要因素,因此对钻井流体密度的精确计算是进行井筒压力控制,避免井涌、井喷或者井漏等井下异常情况的关键。由于钻井流体中存在着液相组分,其密度会随着温度和压力的变化而改变,从而使得钻井流体在地层中的密度与其地面测量结果不一致,鉴于此,需要对钻井流体的液相组分密度进行温压修正。通过对不同类型钻井流体的实验研究,在API标准提供的温压修正模型的基础上,通过引入温度的二次方项,将温度对钻井流体液相密度的非线性影响纳入考虑,并以此形成了改进型温压修正模型。通过与实验数据的对比分析,改进型温压修正模型的密度预测结果普遍优于API模型的预测结果。特别地,对于那些对高温敏感的钻井流体,采用改进型温压修正模型能够显著提升其井下当地密度的预测精确度。Abstract: The density of a drilling fluid is the main factor affecting the pressure distribution along the wellbore. An accurate calculation of the density of a drilling fluid is the key to the avoidance of well kick, blowout and mud losses. Since liquid phase in drilling fluid has densities changing with pressure and temperature, the density of the drilling fluid measured at the surface disagrees with the real density of the drilling fluid downhole. This density disagreement of the liquid phase has to be corrected taking into account the temperature and pressure in the hole. This paper presents a modified temperature and pressure correction model for calculating the real downhole density by introducing a quadratic term of temperature into the API temperature-pressure correction model based on laboratory experiments. Comparing the calculation results with the new model with the experimental data, it was found the new model is superior to the API model. For a drilling fluid whose density is sensitive to high temperature, the new model predicts downhole drilling fluid density with much higher accuracy.
-
Key words:
- Drilling fluid /
- Density /
- Temperature /
- Pressure /
- Correction model
-
[1] WANG F, TAN X, WANG R, et al. High temperature and high pressure rheological properties of high-density water-based drilling fluids for deep wells[J]. Petroleum Science, 2012, 9(3):354-362. [2] AMANI M. The rheological properties of oil-based mud under high pressure and high temperature conditions[J]. Advances in Petroleum Exploration and Development, 2012, 3(2):21-30. [3] ZAMORA M, ROY S, SLATER K S, et al. Study on the volumetric behavior of base oils, brines, and drilling fluids under extreme temperatures and pressures[J]. SPE Drilling & Completion, 2013, 28(3):278-288. [4] SORELLE R R, JARDIOLIN R A, BUCKLEY P, et al. Mathematical field model predicts downhole density changes in static drilling fluids[C]//SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1982. [5] POLITTE M D. Invert oil mud rheology as a function of temperature and pressure[C]//SPE/IADC Drilling Conference. Society of Petroleum Engineers, 1985. [6] OSISANYA S O, HARRIS O O. Evaluation of equivalent circulating density of drilling fluids under high pressure/high temperature conditions[C]//SPE Annual technical conference and Exhibition. Society of Petroleum Engineers, 2005. [7] HOBEROCK L L, THOMAS D C, NICKENS H V. Here's how compressibility and temperature affect bottomhole mud pressure[J].Oil Gas J.;(United States), 1982, 80(12). [8] HAIGE W, YINAO S. High temperature & high pressure (HTHP) mud P-D-T behavior and its effect on wellbore pressure calculations[C]//IADC/SPE Drilling Conference. Society of Petroleum Engineers, 2000. [9] DEMIRDAL B, MISKA S Z, TAKACH N E, et al. Drilling fluids rheological and volumetric characterization under downhole conditions[C]//Latin American & Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, 2007. [10] 汪海阁, 刘岩生, 杨立平. 高温高压井中温度和压力对钻井液密度的影响[J]. 钻采工艺, 2000, 23(1):56-60.WANG Haige, LIU Yansheng, YANG Liping. Effect of temperature and pressure on drilling fluid density in HTHP wells[J]. Drilling & Production Technology, 2000, 23(1):56-60. [11] 汪海阁, 郝明惠, 杨丽平. 高温高压钻井液P-ρ-T特性及其对井眼压力系统的影响[J]. 石油钻采工艺, 2000, 22(1):17-21.WANG Haige, HAO Minghui, YANG Liping. The P-ρ-T(pressure-density-temperature)behavior of HPHT drilling fluid and its effect wellbore pressure calculation[J]. Oil Drilling & Production Technology, 2000, 22(1):17-21. [12] 王敏生, 易灿, 徐加放. 高温高压对超深井钻井液密度的影响[J]. 石油钻采工艺, 2007, 29(5):85-87.WANG Minsheng, YI Can, XU Jiafang. Effects on high temperature and pressure density[J]. Oil Drilling & Production Technology, 2007, 29(5):85-87. [13] 易灿, 曹向峰, 李根生, 等. 超深井循环压耗计算模型研究[J]. 石油机械, 2013, 41(7):11-14.YI Can, CAO Xiangfeng, LI Gensheng, et al. Research on the calculation model of circulation pressure loss in superdeep well[J]. China Petroleum Machinery, 2013, 41(7):11-14. [14] 鄢捷年, 李志勇, 张金波. 深井油基钻井液在高温高压下表观粘度和密度的快速预测方法[J]. 石油钻探技术, 2005, 33(5):38-42.YAN Jienian, LI Zhiyong, ZHANG Jinbo. Methods for quickly predicting apparent viscosity and density of oilbased drilling fluids under HTHP conditions[J]. Petroleum Drilling Techniques, 2005, 33(5):38-42. [15] 张金波, 鄢捷年. 高温高压钻井液密度预测新模型的建立[J]. 钻井液与完井液, 2006, 23(5):1-3.ZHANG Jinbo, YAN Jienian. The calculation of a new model predicting HTHP mud densities[J]. Drilling Fluid & Completion Fluid, 2006, 23(5):1-3. [16] 赵胜英, 鄢捷年, 王利国, 等. 高温高压条件下钻井液当量静态密度预测模型[J]. 石油钻探技术, 2009, 37(3):48-52.ZHAO Shengying, YAN Jienian, WANG Liguo, et al. Prediction model of equivalent drilling fluid density at high temperature and high pressure[J]. Petroleum Drilling Techniques, 2009, 37(3):48-52. [17] 王贵, 蒲晓林. 高温深井当量静态密度的计算[J]. 钻井液与完井液, 2008, 25(1):1-2.WANG Gui, PU Xiaolin.Equivalent static density calculation for high temperature deep wells[J]. Drilling Fluid & Completion Fluid, 2008, 25(1):1-2. [18] 罗宇维, 朱江林, 李东, 等. 温度和压力对井内流体密度的影响[J]. 石油钻探技术, 2012, 40(2):30-34.LUO Yuwei, ZHU Jianglin, LI Dong, et al. The impact of temperature and pressure on borehole fluids density[J]. Petroleum Drilling Techniques, 2012, 40(2):30-34.
点击查看大图
计量
- 文章访问数: 537
- HTML全文浏览量: 155
- PDF下载量: 106
- 被引次数: 0