留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度对超深裂缝性地层井壁稳定性的影响

卢运虎 肖先恒 赵琳 金衍 陈勉

卢运虎, 肖先恒, 赵琳, 金衍, 陈勉. 温度对超深裂缝性地层井壁稳定性的影响[J]. 钻井液与完井液, 2020, 37(2): 160-167. doi: 10.3969/j.issn.1001-5620.2020.02.005
引用本文: 卢运虎, 肖先恒, 赵琳, 金衍, 陈勉. 温度对超深裂缝性地层井壁稳定性的影响[J]. 钻井液与完井液, 2020, 37(2): 160-167. doi: 10.3969/j.issn.1001-5620.2020.02.005
LU Yunhu, XIAO Xianheng, ZHAO Lin, JIN Yan, CHEN Mian. The Effect of Temperature on Stability of Borehole Wall in Ultra-Deep Fractured Formation[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 160-167. doi: 10.3969/j.issn.1001-5620.2020.02.005
Citation: LU Yunhu, XIAO Xianheng, ZHAO Lin, JIN Yan, CHEN Mian. The Effect of Temperature on Stability of Borehole Wall in Ultra-Deep Fractured Formation[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 160-167. doi: 10.3969/j.issn.1001-5620.2020.02.005

温度对超深裂缝性地层井壁稳定性的影响

doi: 10.3969/j.issn.1001-5620.2020.02.005
基金项目: 

国家自然科学基金联合基金项目“超深井井筒安全高效构建工程基础理论与方法”(U1762215);国家油气重大专项项目“超深裂缝性气藏井筒失稳机理及转向工艺优化研究”(2016ZX05051003-003)

详细信息
    作者简介:

    卢运虎,副教授,博士,1983年生,毕业于中国石油大学(北京)油气井工程专业,现从事石油工程岩石力学、井壁稳定与钻井液技术研究。电话(010)89732165;E-mail:luyh@cup.edu.cn

  • 中图分类号: TE21

The Effect of Temperature on Stability of Borehole Wall in Ultra-Deep Fractured Formation

  • 摘要: 温度效应对钻井井壁围岩稳定性的影响不可忽略,特别是超深(>6000 m)裂缝性地层。传统考虑温度效应的坍塌压力预测模型主要适用于连续性地层,温度对裂缝性地层坍塌压力影响的文献研究较少。针对上述问题,首先通过杜哈梅原理确定温度变化产生的诱导应力场,然后利用坐标转换,考虑裂缝渗流场和温度场耦合,获得裂缝面上应力分布特征,最后,将裂缝面应力场代入岩石破坏准则,建立了考虑温度效应的裂缝性地层井壁失稳预测力学模型,研究了温度和裂缝特征对井壁稳定性的影响。研究表明,相同应力和裂缝产状条件下,钻井液循环引起的井壁温度降低增大了井壁垮塌的程度,这与传统模型认为循环引起的温度降低有助于井壁稳定的结论相反;井筒液柱压力一定的条件下,井壁稳定性随裂缝产状发生变化,存在裂缝产状敏感区。对于超深裂缝性地层,随着钻井液循环导致井壁围岩温度降低,增大了井壁失稳风险和程度,在防止井壁失稳的坍塌压力当量密度设计方面应考虑温度和裂缝特征的影响。

     

  • [1] 张光亚, 马锋, 梁英波, 等. 全球深层油气勘探领域及理论技术进展[J]. 石油学报, 2015, 36(9):1156-1166.

    ZHANG Guangya, MA Feng, LIANG Yingbo, et al. Domain and theory-technology progress of global deep oil & gas exploration[J]. Acta Petrolei Sinica, 2015, 36(9):1156-1166.
    [2] 汪海阁, 葛云华, 石林. 深井超深井钻完井技术现状、挑战和"十三五"发展方向[J]. 天然气工业, 2017, 37(4):1-8.

    WANG Haige, GE Yunhua, SHI Lin. Technologies in deep and ultra-deep well drilling:Present status, challenges and future trend in the 13th Five-Year Plan period(2016-2020)[J]. Natural Gas Industry, 2017, 37(4):1-8.
    [3] 滕学清, 陈勉, 杨沛, 等. 库车前陆盆地超深井全井筒提速技术[J]. 中国石油勘探, 2016, 21(1):76-88.

    TENG Xueqing, CHEN Mian, YANG Pei, et al. Whole well ROP enhancement technology for super-deep wells in Kuqa foreland basin[J]. China Petroleum Exploration, 2016, 21(1):76-88.
    [4] 陈勉. 我国深层岩石力学研究及在石油工程中的应用[J]. 岩石力学与工程学报, 2004, 23(14):2455-2462.

    CHEN Mian. Review of study on rock mechanics at great depth and its applications to petroleum engineering of China[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14):2455-2462.
    [5] 林永学, 王伟吉, 金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术, 2019, 47(3):113-120.

    LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of well Ying-1 in the Shunbei oil and gas field[J]. Petroleum Drilling Technology, 2019, 47(3):113-120.
    [6] 金衍, 陈勉, 陈治喜, 等. 弱面地层的直井井壁稳定力学模型[J]. 钻采工艺, 1999, 22(3):13-14.

    JIN Yan, CHEN Mian, CHEN Zhixi, et al. Mechanics model of sidewall stability of straight wells drilled through weakly consolidated formations[J]. Drilling & Production Technology, 1999, 22(3):13-14.
    [7] 刘志远, 陈勉, 金衍, 等. 多弱面地层水平井裸眼井壁垮塌量计算模型[J]. 石油勘探与开发, 2014, 41(1):102-107.

    LIU Zhiyuan, CHEN Mian, JIN Yan, et al. Calculation model for bore-hole collapse volume of a horizontal openhole in multiple-weak-plane formation[J]. Petroleum Exploration and Development, 2014, 41(1):102-107.
    [8] LU Y H, CHEN M, JIN Y, et al. Influence of porous flow on wellbore stability for an inclined well with weak plane formation[J]. Petroleum Science and Technology, 2013, 31(6):616-624.
    [9] LU Y H, CHEN M, JIN Y, et al. A mechanical model of borehole stability for weak plane formation under porous flow[J]. Petroleum Science and Technology, 2012,30(15):1629-1638.
    [10] MCLELLAN P J. Assessing the risk of wellbore instability in horizontal and inclined wells[J].Journal of Canadian Petroleum Technology, 1996, 35(5):113-115.
    [11] 邓金根, 王金凤, 周建良. 渗透性地层井壁坍塌压力和破裂压力的计算模型[J]. 岩石力学与工程学报, 2002, 21(S1):2069-2072.

    DENG Jingen, WANG Jinfeng, ZHOU Jianliang. Calculation model of wellbore collapse pressure and fracture pressure in permeable formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(S1):2069-2072
    [12] 马天寿, 陈平. 页岩地层中孔隙热弹性井眼稳定力学模型[J]. 岩石力学与工程学报, 2015, 34(S2):3613-3623.

    MA Tianshou, CHEN Ping. Porothermoelastic mechanical model of wellbore stability in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2):3613-3623.
    [13] 陈新, 杨强, 何满潮, 等. 考虑深部岩体各向异性强度的井壁稳定分析[J]. 岩石力学与工程学报, 2005, 24(16):2882-2888.

    CHEN Xin, YANG Qiang, HE Manchao, et al. Stability analysis of wellbore based on anisotropic strength criterion for deep jointed rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16):2882-2888.
    [14] LIU Ming, JIN Yan, LU Yunhu, et al. Oil-based critical mud weight window analyses in HTHP fractured tight formation[J].Journal of Petroleum Science and Engineering, 2015(135):750-764.
    [15] 李嗣贵, 邓金根, 李明志. 节理破碎地层井壁稳定的离散元分析[J]. 岩石力学与工程学报, 2002, 21(S1):2139-2143.

    LI Sigui, DENG Jingen, LI Mingzhi. Discrete element analysis of wellbore stability in fractured joint formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(S1):2139-2143.
    [16] YAMAMOTO K, SHIOYA Y, URYU N. Discrete element approach for the wellbore instability of laminated and fissured rocks[C]. SPE/ISRM Rock Mechanics Conference, Society of Petroleum Engineers, 2002.
    [17] ZHAO Haifeng, LI Yawei, CHEN Mian. Technical note discrete element model for coal wellbore stability[J]. International Journal of Rock Mechanics and Mining Sciences, 2012(54):43-46.
    [18] 张培丰. 地层温度对科学超深井井壁稳定的影响[J]. 探矿工程:岩土钻掘工程, 2011, 38(10):1-5.

    ZHANG Peifeng. Effect of the formation temperature on the hole-wall stability in ultra-deep scientific drilling[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2011, 38(10):1-5.
    [19] 蔚宝华, 卢晓峰, 王炳印, 等. 高温井地层温度变化对井壁稳定性影响规律研究[J]. 钻井液与完井液, 2004, 21(6):15-18.

    YU Baohua, LU Xiaofeng, WANG Bingyin, et al. Law of temperature influence on weilbore stability in hot well[J]. Drilling Fluid & Completion Fluid, 2004, 21(6):15-18.
    [20] 朱忠喜, 杜洪韬, 张文波, 等. 气体钻井井壁热应力及井壁稳定性分析[J]. 钻采工艺, 2017, 40(4):25-27.

    ZHU Zhongxi, DU Hongtao, ZHANG Wenbo, et al. Analysis of thermal stress on wellbore and wellbore stability during gas drilling[J]. Drilling and Production Technology, 2017, 40(4):25-27.
    [21] 贾利春, 陈东, 黄兵. 温度对岩石力学特性及井壁稳定性的影响[J]. 钻采工艺, 2017, 40(5):15-18.

    JIA Lichun, CHEN Dong, HUANG Bing, et al. Effects of temperature on rocks mechanics and wellbore stability[J]. Drilling & Production Technology, 2017, 40(5):15-18.
    [22] 张健, 卢运虎. 超深井筒温度分布及其对围岩力学性质的影响研究[J]. 岩石力学与工程学报,2019,38(S1):2831-2839.

    ZHANG Jian, LU Yunhu. Study on temperature distribution of ultra-deep wellbore and its effect on mechanical properties of surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1):2831-2839.
    [23] ZHANG Yayun, TAN Peng, GAO Jiajia, et al. Effect of local thermal non-equilibrium on thermoporoelastic response of a borehole in dual-porosity media[J].Applied thermal engineering:Design, processes, equipment, economics, 2018(142):166-183.
    [24] 陈勉, 金衍, 张广清. 石油工程岩石力学[M]. 科学出版社, 2008. CHEN Mian, JIN Yan, ZHANG Guangqing. Petro engineering rock mechanics[M]. Science Press, 2008.
    [25] 金衍, 陈勉. 井壁稳定力学[M]. 科学出版社, 2012. JIN Yan, CHEN Mian. Wellbore stability mechanics[M]. Science Press, 2012.
    [26] LIANG Chuan, CHEN Mian, JIN Yan, et al. Wellbore stability model for shale gas reservoir considering the coupling of multi-weakness planes and porous flow[J]. Journal of Natural Gas Science and Engineering, 2014, 21:364-378.
    [27] 卢运虎, 金衍, 陈勉, 等. 高温高压耦合下含不同倾角充填缝砂岩的强度实验研究[J]. 岩石力学与工程学报, 2019, 38(S1):2668-2679.

    LU Yunhu, JIN Yan, CHEN Mian, et al. Experimental study on the strength of sandstone filled with different dip angles under the coupling of high temperature and high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1):2668-2679.
  • 加载中
计量
  • 文章访问数:  566
  • HTML全文浏览量:  178
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-03
  • 刊出日期:  2020-04-28

目录

    /

    返回文章
    返回