留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

180℃液硅防气窜剂粒径优化及性能研究

张鑫 魏浩光 刘建 丁士东 周仕明

张鑫, 魏浩光, 刘建, 丁士东, 周仕明. 180℃液硅防气窜剂粒径优化及性能研究[J]. 钻井液与完井液, 2020, 37(1): 97-102. doi: 10.3969/j.issn.1001-5620.2020.01.016
引用本文: 张鑫, 魏浩光, 刘建, 丁士东, 周仕明. 180℃液硅防气窜剂粒径优化及性能研究[J]. 钻井液与完井液, 2020, 37(1): 97-102. doi: 10.3969/j.issn.1001-5620.2020.01.016
ZHANG Xin, WEI Haoguang, LIU Jian, DING Shidong, ZHOU Shiming. Study on Particle Size Optimization and Performance of a Silica Water Suspension as Anti Gas Channeling Agent at 180 ℃[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(1): 97-102. doi: 10.3969/j.issn.1001-5620.2020.01.016
Citation: ZHANG Xin, WEI Haoguang, LIU Jian, DING Shidong, ZHOU Shiming. Study on Particle Size Optimization and Performance of a Silica Water Suspension as Anti Gas Channeling Agent at 180 ℃[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(1): 97-102. doi: 10.3969/j.issn.1001-5620.2020.01.016

180℃液硅防气窜剂粒径优化及性能研究

doi: 10.3969/j.issn.1001-5620.2020.01.016
基金项目: 

国家科技重大专项课题“高压低渗气井水平井固井技术研究”(2016ZX05021005-002)

详细信息
    作者简介:

    张鑫,1993年生,2019年于中国石油大学(北京)获硕士学位,主要从事固井工艺与水泥浆体系研究。E-mail:cup_zhangxin@163.com

  • 中图分类号: TE256.6

Study on Particle Size Optimization and Performance of a Silica Water Suspension as Anti Gas Channeling Agent at 180 ℃

  • 摘要: 为了改善常规液硅防气窜剂在超深井中的防气窜性能,通过在原材料中加入白炭黑和增加砂磨机物理机械研磨等方式,对液硅防气窜剂进行了粒径优化并进行了性能对比评价实验,通过基本性能实验评价了其与水泥浆的配伍性,通过抗压强度、渗透率和胶结强度评价了水泥石的防气窜性能,利用XRD和SEM分析解释了180℃液硅水泥浆体系的防气窜机理。实验结果显示,粒径优化实验制得了平均粒径为300 nm的液硅防气窜剂,与水泥浆配伍性能良好,15%加量以上的液硅使得水泥石抗压强度长期稳定,渗透率小于0.02 mD,胶结强度大于4 MPa,水泥水化产物氢氧化钙极大减少,微观水泥石结构从块状向条状和纤维状转变。研究结果表明,粒径优化后的液硅防气窜剂适用于现有水泥浆体系,能够改善常规液硅防气窜剂在超深井中的应用效果。

     

  • [1] 马永生,蔡勋育,赵培荣.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发, 2018, 45(4):561-574.

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. Cognition and practice of shale gas exploration and development theory in China[J]. Petroleum Exploration and Development, 2018, 45(4):561-574.
    [2] 魏浩光,张鑫,丁士东,等.PEG对纳米硅水泥浆触变性改善的研究[J].钻井液与完井液, 2018, 35(4):82-86.

    WEI Haoguang, ZHANG Xin, DING Shidong, et al. PEG study on thixotropy improvement of nano silicon cement slurry[J].Drilling Fluid&Completion Fluid, 2018, 35(4):82-86.
    [3] 康毅力,王凯成,许成元,等.深井超深井钻井堵漏材料高温老化性能评价[J].石油学报, 2019, 40(2):215-223.

    KANG Yili, WANG Kaicheng, XU Chengyuan, et al. Evaluation of high temperature aging performance of drilling materials for deep well drilling in deep wells[J]. Acta Petrolei Sinica, 2019, 40(2):215-223.
    [4] SINGH L P, KARADE S R, BHATTACHARYYA S K, et al. Beneficial role of nanosilica in cement based materials-A review[J]. Construction and Building Materials, 2013, 47(5):1069-1077.
    [5] ALY M, HASHMI MSJ, OLABI AG, et al. Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar[J]. Materials&Design, 2012, 33(none):127-135.
    [6] BJORNSTROM J, MARTINELLI A, MATIC A, et al. Accelerating effects of colloidal nano-silica for beneficial calci-um-silicate-hydrate formation in cement[J]. Chemical Physics Letters, 2004, 392(1-3):242-248.
    [7] CHOOLAEI M, RASHIDI AM, ARDJMAND M, et al. The effect of nanosilica on the physical properties of oil well cement[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure And Processing, 2012, 538(none):288-294.
    [8] JO BW, KIM CH, TAE GH, et al. Characteristics of cement mortar with nano-SiO2 particles[J]. Construction and Building Materials, 2007, 21(6):1351-1355.
    [9] RICHARDSON IG. Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of C-S-H:applicability to hardened pastes of tricalcium silicate, beta-dicalcium silicate, Portland cement, and blends of Portland cement with blast-fumace slag, metakaolin, or silica fume[J]. Cement and Concrete Research, 2004, 34(9):1733-1777.
    [10] PATIL RC, DESHPANDE A. Use of Nanomaterials in Cementing Applications[J]. Society of Petroleum Engineers, DOI: 10.2118/155607-MS.
    [11] YE Q, ZHANG ZN, KONG DY, et al. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume[J]. Construction and Building Materials, 2007, 21(3):539-545.
    [12] LIU R, XIAO HG, LIU JL, et al. Improving the microstructure of ITZ and reducing the permeability of concrete with various water/cement ratios using nanosilica[J]. Journal of Materials Science, 2019, 54(1):444-456.
    [13] 王成文,陈新,周伟,等.纳米SiO2溶胶缓解油井水泥高温强度衰退的作用机理[J].天然气工业, 2019, 39(3):72-79.

    WANG Chengwen, CHEN Xin, ZHOU Wei, et al. The mechanism of nano-SiO2 sols in relieving the high temperature strength degradation of oil well cement[J]. Natural Gas Industry, 2019, 39(3):72-79.
    [14] QALANDARI R, AGHAJANPOUR A, KHATIBI S. A novel nanosilica-based solution for enhancing mechanical and rheological properties of oil well cement[J]. Society of Petroleum Engineers, DOI: 10.2118/192031-MS.
    [15] HOU PK, CHENG X, QIAN JS, et al. Effects and mechanisms of surface treatment of hardened cementbased materials with colloidal nanoSiO2 and its precursor[J]. Construction and Building Materials, 2014, 53:66-73.
    [16] GU Y, RAN QP, SHU X, et al. Synthesis of nanoSiO2@PCE core-shell nanoparticles and its effect on cement hydration at early age[J]. Construction and Building Materials, 2016, 114:673-680.
  • 加载中
计量
  • 文章访问数:  567
  • HTML全文浏览量:  142
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-08
  • 刊出日期:  2020-02-28

目录

    /

    返回文章
    返回