Temporary Plugging Diverting Test with Fuzzy Ball Fluids in Non-Water Producing Coal Beds in Re-fracturing Well Zheng-X
-
摘要:
郑庄煤层气田郑X井欲实施绒囊暂堵流体重复压裂转向,既形成新裂缝又不影响原缝生产,增加供气体积以达到满意产量。室内先用绒囊流体暂堵直径38 mm煤岩柱塞的中间人工剖缝,后用活性水测试绒囊流体暂堵剖缝承压能力达20 MPa,超过地层18 MPa的破裂压力,满足转向要求;绒囊暂堵流体伤害郑庄煤岩柱塞渗透率恢复值85%,满足原缝继续生产要求;现场利用混砂车和水罐建立循环,通过剪切漏斗配制密度为0.94~0.98 g/cm3、表观黏度为30~34 mPa·s的绒囊暂堵流体。先用活性水顶替检测原缝是否存在后,用排量为3.0~3.5 m3/h注入绒囊暂堵流体60 m3,停泵30 min油压稳定在12 MPa,表明绒囊封堵原缝成功。用活性水压裂液压裂,油管压力上升至18 MPa时出现破裂。微地震监测新缝方位为N13°W,相对于原缝N42°E转向55°。压后间抽2 h产气200 m3,是压裂前产量的2倍以上。采用微地震监测和对比压裂前后产量证明,绒囊可迫使压裂液转向压开新缝,且不伤害原裂缝,适用于煤层气老井重复压裂恢复生产。
Abstract:Re-fracturing diverting has been planned in the well Zheng-x in Zhengzhuang CBM gas field with fuzzy ball temporary plugging fluid. This job was to be done in an effort to increase the gas production by generating new fractures in the reservoir formations, without disturbing the production of the existing fractures. In laboratory studies, a fuzzy ball fluid was used to temporarily plug the artificial fractures on a 33 mm (diameter) coal plug, then an activated water was used to test the pressure bearing of the temporary plugging; it was 20 MPa, exceeding the fracturing pressure of the formation, which is 18 MPa. The percent recovery of the permeability of the coal plug previously flushed with the fuzzy ball fluid was 85%, satisfying the needs for the production of the existing fractures. In field applications, a fracturing blender truck and a water tank were used for the circulation of the fracturing fluid. A fuzzy ball fluid, with density between 0.94 g/cm3 and 0.98 g/cm3, apparent viscosity between 30 mPa·s and 34 mPa·s, was prepared through a shear funnel. After checking the existence of fractures with activated water, 60 m3 of fuzzy ball fluid was injected into the formation at 3.0-3.5 m3/h. The tubing pressure was stabilized at 12 MPa while stopping pumping for 30 min, indicating that the plugging of existing fractures with the fuzzy ball fluid was successful. The formation was then fractured with activated water when the tubing pressure was increased to 18 MPa. The azimuth of the new fractures was N13°W, as measured with microseism, meaning that 55° of diverting was realized compared with the N42°E azimuth of the existing fractures. A gas production of 200 m3 in 2 h after fracturing was achieved, doubling the gas production rate before the fracturing job. Microseism monitoring and the gas production rates before and after the fracturing job indicated that the fuzzy ball forced the fracturing fluid to divert to generate new fractures, while the production of the existing fractures was not affected. This technology is suitable for the re-fracturing of old CBM wells to generate new fractures, while the production of the existing fractures was not affected. This technology is suitable for the re-fracturing of old CBM wells.
-
鲜保安,孙平,张继东. 沁水煤层气田开发配套工艺技术研究[R]. 廊坊:中国石油勘探开发研究院廊坊分院,2008. XIAN Baoan,SUN Ping,ZHANG Jidong.Study on supporting the development of technology in qinshui CBM field[R].Langfang:Research Institute of Petroleum Exploration and Development Branch of Langfang CNPe, 2008. 李金海,苏现波,林晓英,等. 煤层气井排采速率与产能的关系[J]. 煤炭学报,2009,34(3):376-380. LI J inha i,SU Xi anbo,LIN Xi aoying,et al. Relationship between drainage rate and productivity of coalbed methane well[J].Journal of China Coal Society, 2009,34(3):376-380. 李仰民,王立龙,刘国伟,等. 煤层气井排采过程中的储层伤害机理研究[J]. 中国煤层气,2010,7(6):39-43,47. LI Yangmin,WANG Lilong,LIU Guowei,et al.Study on coal reservoir damage mechanism in dewatering and extraction process of CBM wells[J].China Coalbed Methane,2010,7(6):39-43,47. 饶孟余,江舒华. 煤层气井排采技术分析[J]. 中国煤层气,2010,7(1):22-25. RAO Mengyu,JIANG Shuhua.Analysis on drainage techniques of coalbed methane well[J].China Coal Bed Methane,2010,7(1):22-25. 胡永全,林辉,赵金洲,等. 重复压裂技术研究[J]. 天然气工业,2004,24(3):72-75. HU Yongquan,LIN Hui,ZHAO Jinzhou,et al.Study on repetitive fracturing technology[J].Natural gas industry,2004,24(3):72-75. 张义,鲜保安,孙粉锦,等.煤层气低产井低产原因及增产改造技术[J]. 天然气工业,2010,30(6):55-59. ZHANG Yi,XIAN Baoan,SUN Fenjin,et al.The reasons of low yield wells in coalbed methane wells and the technology of increasing production[J].Natural gas Industry,2010,30(6):55-59. 曹新款,朱炎铭,王道华,等. 郑庄区块煤层气赋存特征及控气地质因素[J]. 煤田地质与勘探,2011,39(1):16-19,23. CAO Xinkuan,ZHU Yanming,WANG Daohua, et al.Analysis of the coal bed methane occurrence characteristics and gas-controlling geologic factors in Zhenzhuang Block[J].Coal Geology & Exploration, 2011,39(1):16-19,23. 刘洪,赵金洲,胡永全,等. 重复压裂气井造新缝机理研究[J]. 天然气工业,2014,24(12):102-104. LIU Hong,ZHAO Jinzhou,HU Yongquan,et al. Study on mechanism of inducing new fractures for refracturing gas wells[J].Natural gas industry,2004,24(12):102-104. 王永昌,姜必武,马延风,等. 安塞油田低渗透砂岩油藏重复压裂技术研究[J]. 石油钻采工艺,2005,27(5):78-80. WANG Yongchang,JIANG Biwu,MA Yanfeng,et al. Study of repeated fracturing technology in low permeable sand oil reservoir in Ansai Oilfield[J].Oil Drilling and Production Technology,2005,27(5):78-80. 张旭东. 多次转向重复压裂技术在低渗透油田老井改造中的应用[J]. 江汉石油职工大学学报,2008,21(4):46-47. ZHANG Xudong.Application of repeated fracturing with multiple-echelon turning in reforming old wells of low permeability oil-fields[J].Journal of Jianghan Petroleum University of Staff and Workers,2008,21(4):46-47. GALLUS J P,Pye D S.Deformable diverting agents for improved well stimulation[J].Journal of Petroleum Technology,1969,SPE 2161. 郑力会,孔令琛,曹园,等.绒囊工作液防漏堵漏机理[J]. 科学通报,2010,55(15):1520-1528. ZHENG Lihui,KONG Lingchen,CAO Yuan,et al. The mechanism for fuzzy-ball working fluids for controlling & killing lost circulation[J].Chinese Sci Bull, 2010,55(15):1520-1528. 郑力会,陈必武,张峥,等. 煤层气绒囊钻井流体防塌机理[J]. 天然气工业,2016,36(2):72-77. ZHENG Lihui,CHEN Biwu,ZHANG Zheng,et al. Anti-collapse mechanism of the CBM fuzzy-ball drilling fluid[J].Natural Gas Industry,2016,36(2):72-77. 崔金榜,陈必武,颜生鹏,等. 沁水盆地在用煤层气钻井液伤害沁水3#煤岩室内评价[J]. 石油钻采工艺, 2013,35(4):47-50. CUI Jinbang,CHEN Biwu,YAN Shengpeng.Lab evaluation on formation damage of No.3 coalbed methane reservoir by drilling fluids in qinshui basin[J].Oil Drilling and Production Technology,2013,35(4):47-50. 孟尚志,张志珩,赵军.绒囊钻井液在煤层气水平井稳定井壁技术的应用[J]. 钻井液与完井液,2014,31(3):35-38. MENG Shangzhi,ZHANG Zhihang,ZHAO Jun. Application of chorionic drilling fluid in stabilizing borehole wall in horizontal coal bedmethane drilling[J]. Drilling Fluid & Completion Fluid,2014,31(3):35-38. 温哲豪,薛亚斐,白建文,等.GX-3井绒囊流体暂堵重复酸化技术[J]. 石油钻采工艺,2015,37(5):85-88. WEN Zhehao,XUE Yafei,BAI Jianwen,et al. Technology of re-acidizing Well GX-3 by temporary plugging with fuzzy-ball fluid[J].Oil Drilling and Production Technology,2015,37(5):85-88. 郑力会,翁定为. 绒囊暂堵流体原缝无损重复压裂技术[J]. 钻井液与完井液,2015,32(3):76-78. ZHENG Lihui,WENG Dingwei.Study on repeating fracturing while causing no damage to original fractures[J].Drilling Fluid & Completion Fluid,2015, 32(3):76-78. 段银鹿,李倩,姚韦萍. 水力压裂微地震裂缝监测技术及其应用[J]. 断块油气田,2013,20(5):644-648. DUAN Yinlu,LI Qian,YAO Weiping.Microseismic fracture monitoring technology of hydraulic fracturing and its application[J].Fault-Block Oil &Gas Field,2013,20(5):644-648. 东振,刘亚东,鲍清英,等. 基于断裂力学的煤层气井破裂压力计算方法[J]. 东北石油大学学报,2015, 39(6):111-119. DONG Zhen,LIU Yadong,BAO Qingying,et al. Calculation method of fracture pressure of coal bed gas well based on fracture mechanics[J].Journal of Northeast Petroleum University,2015,39(6):111-119. 期刊类型引用(24)
1. 韩学婷,孟尚志,刘广景,任镇宇,陶树,门欣阳,韦子扬. 煤层气新钻井对老井产能的影响及其控制因素——以沁水盆地柿庄南地区为例. 石油实验地质. 2025(01): 195-203 . 百度学术
2. 孔祥伟,时贤,李赛,齐天俊. 基于坐封受力模型的暂堵球封堵效果影响因素与参数优化. 科学技术与工程. 2024(13): 5350-5357 . 百度学术
3. 游川川,贾宏鑫,张旗旗,何旭东,李周建. 油水井双向治理技术提高整装特低渗高含水裂缝型油藏单井产量. 石油钻采工艺. 2024(06): 681-694 . 百度学术
4. 戴勇,赵俊淇,郭秦,金龙,李宏宏,郑力会. 文献统计预测油气井用绒囊流体应用发展方向. 石油钻采工艺. 2024(06): 651-666 . 百度学术
5. 张遂安,刘欣佳,温庆志,张潇,赵威,袁玉. 煤层气增产改造技术发展现状与趋势. 石油学报. 2021(01): 105-118 . 百度学术
6. 刘登峰,周俊杰,龚齐森,王选琳,补成中. 煤矿井下暂堵转向水力压裂技术研究. 煤矿现代化. 2021(01): 102-105+109 . 百度学术
7. 贺甲元,程洪,向红,翟晓鹏,耿宇迪,王海波. 塔河油田碳酸盐岩储层暂堵转向压裂排量优化. 石油钻采工艺. 2021(02): 233-238 . 百度学术
8. 李永寿,张明华,赵志新,陶丹阳,张熙. 采用不同表面活性剂制备的绒囊流体性能特征. 油田化学. 2020(02): 229-233 . 百度学术
9. 吕帅锋,王生维,刘洪太,李瑞,董庆祥,肖宇航,申鹏磊. 煤储层天然裂隙系统对水力压裂裂缝扩展形态的影响分析. 煤炭学报. 2020(07): 2590-2601 . 百度学术
10. 肖沛瑶. 暂堵转向压裂技术用暂堵剂研究新进展. 石油化工应用. 2019(10): 1-5+24 . 百度学术
11. 赵志新,王洋,张明华,杜文浩,杨召杰,田园芳,张熙. 基于不同水溶性聚合物制备的绒囊流体的性能特征. 高分子材料科学与工程. 2019(10): 138-143 . 百度学术
12. 聂帅帅,郑力会,孟尚志,魏攀峰,张贺,孙昊. 绒囊流体控制煤岩储层水力裂缝形态研究. 钻井液与完井液. 2019(05): 639-645 . 本站查看
13. 蒋建方,翟晓鹏,贺甲元,耿宇迪,崔佳,魏攀峰. 绒囊暂堵剂在深层碳酸盐岩储层转向压裂中的应用. 天然气工业. 2019(12): 81-87 . 百度学术
14. 许洪星,魏攀峰,王祖文,张冕,杨明正,樊晶晶. 无固相绒囊流体混合固相纤维的重复压裂暂堵技术. 非常规油气. 2018(04): 75-79 . 百度学术
15. 黄传艳,李秀云,王乐,赵炜. 深层岩石二次人工致裂缝效果影响因素分析. 水利水电技术. 2018(08): 186-192 . 百度学术
16. 翟晓鹏,鞠鹏飞,谢志涛,楼一珊,张艳. 页岩诱导性裂缝漏失压力动力学模型. 天然气工业. 2018(03): 81-86 . 百度学术
17. 李治,魏攀峰,吕建,卢冰,牛智民,樊晶晶. 天然气井绒囊流体活塞技术不降压压井工艺. 天然气工业. 2018(02): 90-96 . 百度学术
18. 郑力会,李秀云,苏关东,赵炜,巩旭光,陶秀娟. 煤层气工作流体储层伤害评价方法的适宜性研究. 天然气工业. 2018(09): 28-39 . 百度学术
19. 李达,王乐,衣德强,朱李安,胡晓宇,崔云群,党小理,崔露. 苏里格致密砂岩压裂中转向剂用量与转向角的关系. 钻井液与完井液. 2018(04): 108-113 . 本站查看
20. 薛亚斐,温哲豪,沈云波,王乐,梁凌云. 绒囊暂堵转向压裂裂缝转向能力及其力学机理分析. 石油钻采工艺. 2018(05): 633-640 . 百度学术
21. 冯建秋,王凯,陈倩倩,贾萌,陈亚琪,聂帅帅. 绒囊钻井液在三交区块勘探应用的可行性研究. 非常规油气. 2017(05): 94-98 . 百度学术
22. 聂帅帅,郑力会,陈必武,侯涛,彭睿,付毓伟. 郑3X煤层气井绒囊流体重复压裂控水增产试验. 石油钻采工艺. 2017(03): 362-369 . 百度学术
23. 郑力会,魏攀峰,张峥,聂帅帅,楼宣庆,崔可心,付毓伟. 联探并采:非常规油气资源勘探开发持续发展自我救赎之路. 天然气工业. 2017(05): 126-140 . 百度学术
24. 白建文,周然,邝聃,高伟,陶秀娟,彭睿. 二氧化碳干法加砂压裂增黏剂研制. 钻井液与完井液. 2017(06): 105-110 . 本站查看
其他类型引用(9)
-

计量
- 文章访问数: 1037
- HTML全文浏览量: 241
- PDF下载量: 507
- 被引次数: 33